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In today’s competitive landscape, product-led experimentation is more than a good idea—it’s a necessity 
for product and engineering teams to quantify their impact. But they need to cultivate a culture of 
experimentation and infuse it into every phase of the product development process to build with confidence.

Built by experts and co-authored by Reforge, this guide is designed to help product and engineering teams establish product-led experimentation 
programs successfully. Throughout this guide, our experts will walk you through how to build an experimentation culture, understand the practice of 
experimentation, prioritize your experimentation roadmap, and more.

Whether your goal is to make smarter decisions, maximize business impact, or drive rapid innovation, product-led experimentation can help. This guide 
will help you scale product-led experimentation to unleash the power of your products.

INTRODUCTION

https://www.reforge.com/programs/experimentation-testing?utm_source=amplitude&utm_medium=referral&utm_campaign=comarketing&utm_term=&utm_content=experimentation_playbook
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Launch day for a new, major feature is always exciting. Bringing a 
squad together, creating something new, and getting it into the first 
customers’ hands: it’s product management at its best. 

It’s also only half the battle.

How do we know if we did the job? If we’re successful? Many companies 
are happy when new deployments ship: presentation decks are updated, 
tasks are marked as completed, and teams are acknowledged in an all-
hands meeting. But the process is far from complete when a new feature 
or product ships. In fact, shipping could be seen as a midpoint of your 
project. The best product teams know that what truly matters is not just 
shipping those outputs, but rather what outcomes they drive.

To identify and understand those outcomes, we need to be able to 
measure the effect of the changes we make to our product. To do  
this, teams must develop hypotheses, run experiments, evaluate 
results, and ultimately use those results to inform future strategy and 
decision-making.

Despite the quest for outcomes, the goal is not to ship more to 
maximize outputs. Instead, as product managers, we aim to maximize 
outcomes and minimize the outputs it takes to get there.

This is all a part of a culture of experimentation.

In this chapter, we’ll explore what “culture of experimentation” means, 
how to cultivate it within your organization, and what success looks like 
as you build it.

What does a culture of experimentation mean?
In today’s competitive business environment, a culture of 
experimentation is not optional for product teams. The work 
teams do must align with both user and business value. A culture 
of experimentation helps you to de-risk projects and deliver value 
by breaking down huge organizational goals into smaller, testable 
hypotheses that a squad can own. Organizations that ignore this 
approach will find themselves going down costly dead ends and  
falling behind. 

The best product teams know 
that what truly matters is not just 
shipping those outputs, but rather 
what outcomes they drive.

Building a Culture of 
Experimentation

By Saleem Malkana, 
Reforge
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A culture of experimentation must permeate every level of an 
organization, with a particular focus at the squad level. Squads are the 
atomic unit team that solves a customer problem, usually: product, 
design, and development. Some squads benefit from additional 
partners like research, marketing, and others. This grassroots approach 
fosters autonomy: empowering teams to generate hypotheses, design 
experiments, and learn from their outcomes. 

As experimentation spreads to other squads, apply lessons learned  
to new teams and unify the culture across the org. It's critical to  
have an experimentation strategy here, and to avoid a scattershot 
approach of running a thousand small A/B tests whose learnings  
do not compound. A culture of experimenting at the team level 
creates a powerful foundation for agility and adaptability. This allows 
companies to conquer challenges and seize opportunities in an  
ever-changing landscape.

Why the continual mention of culture? People may think: "Teams 
need to experiment. Platforms such as Amplitude Experiment support 
that need." It is a powerful product, but it's only part of the solution 
because culture is not purely technical. Ultimately, culture is a product 
of people, integrated processes and communication, and technology. 
Let's explore these three elements in more detail:

•	� People. It starts with resourcing an empowered squad. Across  
the squad, members should be data-driven and empowered to  
own and solve the most important problems facing customers and 
our business.

•	� Integrated processes & communication. Experimentation must be 
integrated into the product development process from the outset, 
with healthy communication across teams. Hypotheses, test design, 
success metrics, and implementation must be considered early—not 
in the final stages of a launch and certainly not ad hoc after launch. 
Open communication to celebrate wins and losses, share customer 
insights, discuss ideas, and plan for the future fosters a strong 
culture of experimentation.

• 	 �Technology. Complement the right people and processes with 
a robust platform that enables the best work to be done. The 
technology you use should not only measure product analytics but 
also include a framework for A/B testing. 

Building a culture of experimentation
We have an understanding of the foundational components of 
strong experimentation culture—people, process, technology, and 
communication—however, we would be remiss not to mention other 
essentials as you work to build a culture of experimentation at your 
organization. 

•	� Secure an executive champion. An executive champion should help 
generate momentum, support risk-taking, and encourage learning 
from failures.
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A culture of experimentation is 
not solely a technical problem 
to solve. Culture is a product of 
people, integrated processes and 
communication, and technology.

•	� Be early and rigorous in your hypothesis 
design. Experimentation shouldn’t be an 
afterthought. Define hypotheses and success 
metrics when a project starts; don’t try to figure 
these out as you launch.

•	� Embrace failure. To truly build a culture of 
experimentation, organizations must embrace 
failure as a mechanism to learn. If you never 
fail, you probably are not pushing hard enough 
on new ideas.

•	� Break grand challenges into smaller testable 
hypotheses. Embracing failure works when 
individual components of a feature are tested 
and invalidated versus the feature itself. Don’t 
ship a whole product and see how it goes. 
Instead, de-risk the development of large 
features by testing smaller components. This 
allows you to figure out which components 
are validated by customer data and determine 
how to iterate. After all, the faster you drive 
the feedback loop of shipping to customers, 
measuring, and iterating, the faster you succeed.

•	� Establish one center of excellence.  
Start small and focused with one team to 
validate the basic experimentation stack and 
build from there.
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•	� Cultivate curiosity. As previously mentioned, the goal is to maximize 
outcomes and minimize the outputs it takes to get there. To build a 
culture of experimentation, you must get management addicted to 
outcomes. Start with projects your team has already shipped. This 
should be easier to measure, exposes gaps in measurement ability, 
and kickstarts the mindset that shipping means we get outcomes. 

•	� Build a high-trust experimentation system, even if only measuring 
simple metrics. Waiting to measure long-term results can negatively 
hurt momentum. Establish proxy metrics that help shorten the 
lifecycle of the experiment. Make sure your proxies are upstream  
and can inform whether you’re going in the right direction or not. 

All of these elements are important to building a sustainable culture 
of experimentation, but I want to dive a little deeper into the role 
executives play in enabling a culture of experimentation.

Executive support is important for building a culture of experimentation 
because it helps generate momentum and encourages risk-taking and 
learning from failures. Other ways executives champion your budding 
experimentation culture include:

•	� Providing resources, such as time, budget, and tools, to support 
experimentation and empower teams to take action.

•	� Celebrating and recognizing successes and failures, as both provide 
valuable learning opportunities and help build a culture of continuous 
improvement.

•	� Creating channels for open communication and collaboration across 
teams and departments to facilitate sharing of knowledge, insights, 
and best practices.

One thing championing executives don’t do is request laundry lists 
of features to ship without connection to strategy or goals. Doing 
so reduces product empowerment, squashes any bandwidth for 
experimentation, and hurts teams in the long run.

Cultural barriers to experimentation
At Reforge, we care so much about experimentation that we 
built an entire program around creating and executing a strategic 
experimentation system for breakthrough ideas. The program starts 
with experts Elena Verna and Fareed Mosavat breaking down cultural 
barriers to experimentation. Apply to Reforge for access.  

Executive support is important for building a 
culture of experimentation because it helps 
generate momentum and encourages risk-
taking and learning from failures.

https://www.reforge.com/programs/experimentation-testing?utm_source=amplitude&utm_medium=referral&utm_campaign=comarketing&utm_term=&utm_content=experimentation_playbook
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As businesses move from output-based to outcome-based 
approaches, product leaders—and their investments—are facing 
greater scrutiny. I saw this growing trend firsthand in my work 
heading analytics and experimentation for startups such as MOO, 
PhotoBox, and Hopin. In fact, it’s why I founded my product 
measurement consultancy CAUSL.

This shift in accountability has led to something of a heyday for 
experimentation. There’s a good reason for that. 

Experimentation—specifically, A/B testing—is the gold standard 
when it comes to making decisions about iterating on features or 
products, or launching entirely new ones. It also makes it possible 
to quickly assess the impact of those product decisions before 
committing to them. And that’s important because launching 
features and products is expensive: the total cost goes beyond 
deployment to include research, design, engineering, data and 
analytics, and more. In other words, it’s a way for businesses to 
“de-risk” their investments. 

The Importance of 
Experimentation and How 
to Get Started

By Bhavik Patel 
CAUSL

Experimentation—specifically, A/B 

testing—is the gold standard when 

it comes to making decisions about 

iterating on features or products, or 

launching entirely new ones.
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But there’s another reason product teams are turning to 
experimentation. While measuring the ROI for something like 
marketing is relatively straightforward, that’s typically not the case 
with product. After all, product investments are measured by things 
like headcount and engineering hours. And while product teams hope 
they can tie spend to company goals like revenue growth, customer 
growth, or conversion rates, there are only a few ways to do that. 
Experimentation is one of them.

The importance of good experimentation 
design
Experimentation is important—but it’s only useful if it’s done right. 
What does that mean? Well-designed experiments are rooted in the 
scientific method and can be broken down into the following phases 
and steps:

Planning (pre-experiment)

•	� Document the reasons for running the experiment.

•	� Conduct research to validate your observations. This research can be 
quantitative, qualitative, competitive insights, and more.

•	� Build a hypothesis with clearly defined product metrics or KPIs.

•	� Create alignment on next steps based on each possible outcome: 
whether each variant wins, or if the test does not reach statistical 
significance.

•	� Other key considerations include the test duration, audience if it is a 
targeted experiment, traffic split, critical threshold, and more

•	� Clearly articulate what is being tested and modified. This could be a 
design change, a new feature or experience, and more.

•	� Confirm that the experiment can be measured using analytics tools.

During the experiment

•	� Create analytics dashboards for ongoing monitoring.

Post-experiment

•	� Analyze the results.

•	� Articulate the outcome of the experiment and move forward with the 
predetermined next steps.

Building vs. buying an experimentation 
platform
Of course, any discussion on how to run experiments inevitably leads 
to the question of where to run them. In other words, is it best to 
build an experimentation platform or buy one? My answer is always a 
resounding “buy.” In my view, experimentation is a commodity. Most 
companies wouldn’t build a CRM platform, so why should they build 
one for experimentation? 

Experimentation platforms are the product of numerous statisticians 
and engineers who have ensured the platform meets statistical 
requirements on elements such as randomization and statistical 
engines. They also come with user-friendly interfaces making the 
platform accessible to different team members. Building something 
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similar would require two or three years, plus ongoing maintenance—
and even then, it might result in running experiments with built-in 
biases that lead to product teams making poor decisions. 

Measuring A/B testing success 
Like any good program of work, A/B testing demands its own method 
for assessing success. In my view, this comes down to: velocity, 
process, and win rates. 

Velocity

Companies just starting with experimentation should look at the 
number of tests run, quarter over quarter, year over year. Numbers 
aren’t everything, but they can serve as a good indicator of whether a 
team or company has built a culture of experimentation. 

Process

As the experimentation program evolves, the focus should shift to 
the quality of experiments and the process they follow to go live. 
That means ensuring the process adheres to scientific methods—in 
particular, grounding hypotheses in evidence-based research, whether 
through quantitative data or qualitative data such as customer 
feedback or service tickets. It also means that there is an optimized 
and documented flow in which an experiment can go from an idea 
into production that accounts for prioritization, development time, 
experiment length, and expected impact.

Win rates

Ultimately, every team running experiments will also want to evaluate 
its win rate. While it’s natural for that number to fluctuate at the outset 
of an experimentation program, it should stabilize over time. As a rule, 
experimentation programs should seek an approximate win rate of at 
least 1 in 5. If your win rate is lower, you may have a problem at the 
hypothesis and research stage. But it’s not quite that simple. While 
those wins represent value, the losses are worth something, too. They 
are the bad decisions that were rolled back, ensuring the risks—and 
costs—were averted. Even tests without a clear winner can help save 
on product costs and feature bloat.

Experimentation milestones

As experimentation programs mature, there are a number of other 
milestones to keep in mind, including growth in the number of teams 
running experiments. After all, experimentation is something to 
democratize—it shouldn’t belong to one team. The entire organization 
should embrace testing. 

As a rule, experimentation programs 
should seek an approximate win rate 
of at least 1 in 5. 
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Reliable tooling is another important goal post. If teams can’t trust 
their instrumentation and tooling, they will inherently distrust their 
results and question the experiment’s validity. Ensuring your teams 
have a reliable stack is essential to build trust across your organization. 

Another key milestone is buy-in at all levels of an organization, 
including the top. In the same way that reliable instrumentation builds 
trust in testing, a business-wide culture of experimentation means 
stakeholders are a lot more likely to align on outcomes—freeing them 
to focus on what to do next.

Best practices for launching an 
experimentation program 
Newcomers to experimentation should start by building their 
testing muscle memory by establishing a regular cadence for 
experiments. There’s no need to get overly academic at first. After all, 
experimentation itself is trial and error, and that’s what makes it such a 
beautiful concept to adopt. It’s about finding what works, not nailing it 
out of the gate. 

To do that, it makes sense to start with low-risk tests. I wouldn’t advise 
starting with a complex pricing experiment, for example, but it’s a 
great goal to work toward. Another pitfall to avoid: getting hung up 
on arbitrary—and quite often unrealistic—numbers. Companies often 
assume they should be running thousands of experiments because 
they compare themselves to Amazon or Netflix, but reaching that 

scale requires an enormous amount of traffic and resources. For most 
companies, the goal shouldn’t be running thousands of experiments; 
the goal should be running more than they did last quarter or year. 

Experimentation shouldn't belong 
shouldn’t belong to one team. 
The entire organization should 
embrace testing. 

Make better product decisions
These are just a few of the easy ways to get started on an 
experimentation program, and there is little reason to wait. A well-
designed, science-backed experimentation program is one of the most 
powerful tools available for making smarter product decisions—from 
when and what to launch to measuring the ROI. And with product 
teams under ever greater pressure to spend wisely, that’s more 
important than ever.
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Process matters when it comes to 
experimentation. And that goes for 
experimentation ideation, too. 

Knowing what and where to test is mission-critical to both 
the experiment and the experimentation program. Ad hoc 
or misguided testing can shake an organization’s faith in the 
entire program, which leads to bad decision-making and 
undermines data-driven cultures.

To truly understand every element of a platform or product 
and how they ladder up to an organization’s business goals, I 
like to create a “metric tree.” Metric trees chart how various 
metrics from features and products relate to one another 
and the business’ growth levers. After all, those are the 
same levers you want your experiments to optimize. Aside 
from helping you understand how your business makes 
money, metric trees can help compartmentalize experiments 
and give you an idea of where to focus your efforts. 

Credit: @DodoNerd

Experiment Ideation and 
Roadmap Development 

By Bhavik Patel 
CAUSL
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Sun Diagrams are another useful tool for ideation. In this diagram, the 
sun takes the form of a goal, and the sun’s rays are workstreams. At the 
end of each workstream is a team or pod that is organized according to, 
for example, the Pirate framework for growth. (For the uninitiated, the 
framework focuses on the customer acquisition stages of acquisition, 
activation, retention, revenue, and referral.) I like to divide the diagram 
into three columns to sub-categorize the workstreams by experiment 
type: “brilliant basics,” “enhanced experiences,” and “magic moments.” 

Brilliant basics cover experiments to meet customer expectations, such 
as signups and onboarding flows. Enhanced experiences refer to intuitive 
experiences like search experiences and wish lists that allow customers 
to discover and use the core product. And finally, magic moments are the 
kind of experiences and innovations, like recommendation engines, that 
differentiate the product and delight customers.

Brilliant Basics

Work Stream 1

Goal

Work Stream 2

Work Stream 3 Work Stream 4

Enhanced Experiences Magic Moments

Cr
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 @

Do
do
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d

https://www.linkedin.com/posts/dodonerd_sun-charts-a-framework-for-experimentation-activity-7008377743780233216-X_QV/
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How to validate experimentation concepts
Experimentation can be a big cost-saver; every “failed” experiment 
represents features and products you shouldn’t have launched. But 
experimentation is still an investment, potentially requiring significant 
engineering hours. This is why it’s helpful to have a method for 
determining which experiments are worth pursuing and which are 
not. Fortunately, there are a number of techniques to help guide your 
experimentation roadmap.

Painted door test

As its name suggests, a painted or fake door test offers a button 
or link to gauge customer interest in a new feature or product. Of 
course, when customers click on those features, they discover that 
feature isn’t available, often finding a form to “learn more.” This can 
lead to unintended consequences such as disappointing and, in rare 
circumstances, even alienating users. But it does provide great data 
and insight for further investigation.

Sign-ups

Another easy way to measure interest is to ask customers to sign up to 
stay informed about whatever feature you’re building. You can do this 
through your website or social media accounts.

Desk research

Desk research involves looking into whether other companies have 
published studies about tests they have done on the same sort of 
feature you’re creating. This can save you time by learning from the 

experiences of teams at other organizations and help you understand 
what uplift they were able to generate based on their learning. 

Similar experiments

Looking at previous experiments of the same size and product area can 
serve as a useful guide or proxy when it comes to assessing potential 
uplift, adoption, or usage.

Leap of faith

Sometimes, the only way to validate an experiment is to take a leap 
of faith and push forward with it. After all, validating experiments 
requires experimenting. Remember that A/B testing is a great tool for 
decision-making, but it shouldn’t hinder your ability to make a decision. 
Sometimes, you just have to roll the dice.

When not to run an A/B test
In some situations, A/B testing may not be appropriate or even 
possible. Pricing is a prime example of an area where experimentation 
may be ethically untenable. It can also cause customers to complain—
potentially very publicly—that they are being charged more for the 
same goods or services than other customers. 

Fortunately, there are alternatives for these scenarios, with analytics 
playing a key role in each approach. Taking the pricing example again, 
one option is a geographic-based study of customers in two similar 
markets. Observing the effect higher pricing has in one market can 
indicate the impact of higher prices across the board. Estimating the 
causal impact using regression modeling is another useful approach—it 
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looks at how an input affects a particular metric and how a change in 
that input affects the metric. Pre-post analysis also avoids classical 
testing by comparing data gathered before and after a change. 

Some teams may even roll out an experience or feature without 
running a test. Of course, if it “flops,” you can always roll back the 
experience, but keep in mind that by not experimenting, you won’t 
be able to say with confidence that the downturn of your metric was 
due to the feature or some other external factor. The same is true 
for the opposite scenario. This practice may be especially tempting 
when your team is confident about the expected outcome. But even 
if your intuition is correct, you’ll miss key data around the magnitude 
of the impact, which is critical to demonstrating the impact of 
experimentation. 

There’s something else to consider with this practice. Rolling 
out features without testing in the early days of a startup makes 
sense, but after a certain point, if every feature is released without 
validation, you’re setting a dangerous precedent that output is 
preferred over outcome. In my opinion, this leads to feature bloat. 
Experimentation is a healthy way to balance intuition-based 
decisions and evidence-based decisions. 

How to prioritize experiments
Popular tools such as the RICE scoring model are very effective for 
determining where experiments belong on a team’s roadmap. The RICE 
scoring model measures initiatives according to their reach, impact, 
confidence, and effort. 

RICE Scoring Model

RICE
Score

Reach Impact

Effort

Confidence

R I C
E

=
x x
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That said, RICE scores are not the only factors to 
weigh when prioritizing testing. Most companies 
will need to balance them against the availability 
of traffic and internal engineering and design 
resources. Often it’s a question of whether 
to tackle one big test that takes up all the 
organization’s bandwidth or taking on a number 
of smaller tests. These are the tradeoffs most 
businesses have to make, especially if they don’t 
have a large volume of traffic. And let’s face it, 
that’s most companies.

Build a lasting culture of 
experimentation
Choosing the right experiments—and when 
it’s better to take another route—may require 
some time and effort. But putting in the work of 
thoughtfully ideating, validating, and prioritizing 
them is well worth it. It will pay off in the form of 
an experimentation program embraced by your 
entire organization and a strong data-centric 
culture. 

Rolling out features without testing 
in the early days of a startup makes 
sense, but after a certain point, if every 
feature is released without validation, 
you’re setting a dangerous precedent 
that output is preferred over outcome.
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Product-led growth (PLG) has provided B2B product teams an 
opportunity to drive meaningful impact at their organizations, but 
it changes how product managers should view their position. As 
organizations invest in PLG initiatives, they inevitably put more 
accountability on the product to deliver growth outcomes,  
including revenue. 

This is a fundamentally new motion for B2B product teams since 
growth has primarily been driven by sales and marketing, not product. 
In sales-led motions, product teams are measured on release velocity 
and the number of features shipped each quarter. As a result, they 
invest in tools and processes focused on speed to delivery rather than 
direct impact on business KPIs.

In PLG motions, simply shipping fast creates substantial exposure 
to the business, so what happens if you ship the wrong feature or 
experience? Key KPIs like user growth, subscription revenue, and 
retention can all be negatively impacted.

But if product leaders shift their approach, tooling, and mindset to 
tie experimentation to the development process, product teams can 
deliver high-impact releases that directly influence revenue as they 
continue to adopt PLG. 

In PLG motions, simply shipping  
fast creates substantial exposure to 
the business.

Product-Led 
Experimentation for B2B 
Organizations

By Elena Verna

The dangers of not experimenting
Consider the implications of continuing to develop your product 
without experimentation in a PLG motion. Without a clear, data-driven 
approach to product development, all decisions will revert to the 
opinion of the HIPPO (also known as the “highest paid person in the 
room”) or be based on intuition. This kind of decision-making is not 
good for your product or your customers. Even if you stumble into a 
positive change, your success will not be repeatable. 

Intuitive decisions sometimes work. It makes sense that someone 
who knows a product and user base well will be able to instinctively 
know what changes to make. However, when your product and market 
changes, your intuition expires.

In most products, there’s a perception and reality gap between 
what customers need and what you think they want. As your B2B 
product grows, that gap also grows. You need to regularly update your 
knowledge by gathering data through experimentation.

https://amplitude.com/product-led-growth
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There’s more to experimentation than A/B tests
Experimentation doesn’t mean running A/B tests across your whole 
product. There are several types of tests product development teams 
can run to learn about their users and their product.

Even with A/B tests, you can run a full release or a partial rollout 
across a small section of users. You can also run:

•	 �Pilots and beta features: A group of users tries your product or 
feature and gives feedback before it’s ready for general release.

•	� Wizard of Oz tests: You create a mock interface you control, 
allowing users to try out a product before you build it.

•	� A painted door: Check demand for a feature by creating a fake 
button or CTA with a placeholder to say the feature isn’t available 
yet and track the number of clicks.

Another option is to ship small changes and analyze the data pre and 
post-release.

The experimentation journey
A culture of experimentation doesn’t magically appear overnight. A 
single team needs to first learn how to test, how to learn, and how to 
win. Once that team has developed an experimentation skillset and 
mindset, they should work on democratizing access to testing and 
learning. That way, the entire organization can learn how to win with 
experimentation.

How to experiment in B2B 
Based on my experience, here are the steps for successful 
experimentation in B2B organizations. 

Prioritize the velocity of learning

The velocity of learning is the North Star Metric of experimentation.  
To learn quickly, you need to experiment frequently with tests that 
deliver learnings within a short period.

Teams should start by producing a breakdown of their assumptions 
about the product. Then, they have to create new development 
lifecycle processes focused on data collection about assumptions 
rather than full feature availability.

The correct tooling to run tests, data efficacy, and a culture of 
forgiveness rather than permission are also essential to a high  
learning velocity. 

https://amplitude.com/blog/product-north-star-metric
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Shift your mindset
Organizations usually start with the wrong mindset: they want to see 
clear wins from experimentation. They tend to only treat an experiment 
as successful if it brings a lift in a metric they want to improve. 

But tests that “fail” because they identify a product variation that 
underperforms or doesn’t deliver significant movement are more 
valuable than a metric lift. These “failures” are useful because they give 
teams a concrete example of what not to do. A shift in your mindset 
and definition of experimentation success is critical to driving learning 
velocity and promoting healthy accountability within your organization.

Identify where you have enough volume to test
A common problem for B2B organizations is they don’t have enough 
traffic, leading to weeks or months before they see test results. But if 
you can’t observe meaningful movement in two to three weeks, your 
velocity of learning will drastically decelerate.

Imagine that to run a certain test you have to spend eight months on 
the experimentation cycle—from ideation to development to testing. 
You’ve now spent an enormous amount of time and resources on only 
one set of learnings.

Map out your customer journey to identify areas with enough traffic to 
test based on the minimum detectable effect (MDE) you want to drive. 
If you want to prove a smaller MDE, you need much higher traffic than 
trying to validate a larger MDE. While this seems counterintuitive, this 

insight is important to help you define what tests you should consider 
based on the desired impact on your key metrics.

If you have a product-led growth motion, you will likely find that your 
dataset looks similar to B2C companies, with more traffic at the top of 
the funnel. Your homepage and landing pages would be ideal high-
traffic places to start running A/B tests.

If you have low-traffic areas you want to test, you can take other data-
driven approaches, such as the different testing methods we listed 
above (pilots, beta features, etc.). These tactics are much easier to 
execute while still providing great insights and data for analysis.
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AMPLITUDE CASE STUDY  
Self-serve checkout volume

At Amplitude, we recently launched a self-serve checkout. 
There wasn’t enough volume to run standard A/B tests, so we 
opted to test with a pilot targeted at a segment of customers. 
We then vigorously analyzed the impact pre vs. post-release. 

Once we get more volume in our self-serve monetization 
experience, there may be an opportunity to A/B tests in the 
future. And since there’s more volume in other areas—like 
the pricing page, upgrade triggers, and dashboard view—we 
prioritize A/B testing these learning opportunities instead.

Don’t test for the sake of testing
Not everything should be up for experimentation. It is 
unsustainable for your team to run tests in every product area. 

Only experiment when:

•	 �Your test hypothesis aligns with the business strategy.  
Your test needs to relate to the lever your org is focused on 
influencing.

•	� You have enough traffic. If there’s not enough volume, it’ll  
take a long time to show results.

•	 �Your test data will inform decision-making. If you don’t  
need precise quantitative data to decide, a test isn’t necessary.

•	 The cost of running a test is lower than its potential impact. 

Let’s say you want to test including an extra email in your 
welcome flow to drive retention. There’s enough traffic, which 
means you could test it. But do you really need to know the 
impact of an additional email on the business to the last cent? 
You’re better off testing a bigger bet and saving your team’s 
capacity to focus on a potentially more impactful experiment, 
like checking how users respond to a new feature.

Prioritize tests based on the cost of the test, its potential  
impact, and your confidence that it will have an impact.
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Roll out experimentation across your 
organization
Democratizing testing allows you to increase the velocity of learning 
across your entire organization. However, democratizing too soon can 
create chaos and data drift. Start by creating experimentation systems 
on one team before rolling out testing across the organization.

When you’re ready to expand experimentation, focus on making testing 
more efficient. Improve your processes and tooling to reduce the costs 
associated with each experiment. This increases the number of tests 
you can run across members and teams within your organization.

As you scale experimentation, teams also need permission to 
experiment in multiple product areas. People need the ability to pull 
a lever where it matters most. When engineers want to test but aren’t 
allowed to write code in the surface area their hypothesis impacts, they 
waste resources chasing tests that don’t deliver learnings.

Another situation that limits experimentation is when people are too 
scared to test things related to their monetization model—like feature 
allocation or prices. In this case, they restrict testing to less critical 
areas like acquisition.

Experimenting close to your revenue conversion areas can be risky, but 
if you don’t test these high-impact moments, you won’t understand 
how to effectively optimize your monetization model. Instead, limit risk 
by experimenting on small subsets of your traffic so you can roll back 
the test quickly if your KPIs start to drop.

Make sure testing doesn’t paralyze decision-
making
While it’s true you should prioritize the velocity of learning by 
increasing testing across your organization, there’s a limit. Too many 
data points can slow you down. 

When I worked with SurveyMonkey, we did a good job of increasing 
our velocity of learning by developing a democratized culture of 
experimentation. But then we hit an unexpected challenge: no one 
wanted to release any feature without testing it first. Our team fell 
victim to “analysis paralysis” since tests became too much of a crutch 
and slowed down our innovation cycles.

To avoid analysis paralysis, ruthlessly prioritize the tests you run. First, 
map the average traffic throughout each part of your product, then 
assess your engineering capacity to help build, QA, and deliver each 

Experimenting close to your revenue conversion areas 

can be risky, but if you don’t test these high-impact 

moments, you won’t understand how to effectively 

optimize your monetization model. Instead, limit risk by 

experimenting on small subsets of your traffic so you 

can roll back the test quickly if your KPIs start to drop.
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test. Next, use this information to identify how many tests you can run 
and compare it to how many tests you are currently running to see if 
you are under or over capacity.

If you are under capacity and can test more, empower more teams 
to start experimenting in different product areas. If you are testing 
at capacity but not learning much from your tests, consider running 
different tests and reprioritizing your experimentation roadmap. If 
you are over capacity, be more selective about the tests you run; more 
testing isn’t always better.

Experimentation metrics
Each test should focus on one revenue-related lever; the remaining 
levers become your guardrail metrics. Organize your metrics into a 
data-hierarchy map.

In B2B, there are four main levers with KPIs that influence revenue:

•	 Acquisition metrics: prospecting traffic and new sign ups

•	 Activation metrics: set up, “aha” moment, habit-forming moment

•	 Engagement metrics: frequency of use: power, core, casual

•	 Monetization metrics: free-to-paid conversion, expansion, renewal

For each experiment you run, select one of the four levers as the 
main success metric for the test. Track the remaining three as your 
guardrails to de-risk your experiment. For instance, if you’re running 

a test related to acquisition, set up a dashboard to monitor activation, 
engagement, and monetization metrics.

If your test starts to harm these guardrail metrics, you will receive 
rapid feedback, giving you a clear signal to roll back the test. With long-
running experiments, you can even monitor the impact of your test for 
months after the test period is over since there could be latent effects.

As you build experiments and focus on guardrail metrics, be sure to 
track the guardrails in time cohorts—for instance, what happened over 
24 hours versus over one week. This step will help you identify if you 
have a pull-forward effect or latent impact compared with tracking a 
running total.

If your test starts to harm these 
guardrail metrics, you will receive 
rapid feedback, giving you a clear 
signal to roll back the test.

https://amplitude.com/blog/data-hierarchy-map
https://amplitude.com/blog/product-metrics-guide
https://avc.com/2021/12/the-pull-forward/
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Create a culture of learning with 
experimentation as your third data set
When considering the most important data for their business, 
companies typically think about two primary datasets:

•	� Qualitative data, such as user needs and motivations captured by  
user interviews.

•	� Quantitative data, such as transactional production data, behavioral 
data, or third-party recorded data, such as CRM.

When teams only work with qualitative and quantitative datasets, they 
tend to observe correlations between data points: action A relates to 
action B in some way. But if you want to impact business, you need 
to identify causal relationships—where action A causes outcome B. 
Causal relationships tell you that if you move a certain lever, you’ll get a 
certain outcome.

B2B organizations that invest in experimentation create a third dataset 
from their experiment results, enabling them to identify causative 
relationships. Plus, it informs your experimentation roadmap since you 
can review results from previous experiments to accelerate learning 
without harming your capacity to test.

To build your experimentation data set, create a repository of every test 
you’ve run with clearly articulated results. Make the library accessible 
to everyone, so people who work across all parts of your product can 
add to and learn from it.

Enforce rituals around experiment results. Share experimentation 
learnings with the whole organization (for example, at All Hands 
meetings) in the same way as you’d share results from user interviews. 
Include every test, regardless of whether they were “successful” or not.

Get started with an experimentation framework
To help you bring more value to your B2B organization with a sustainable 
experimentation program, I created a seven-step experimentation 

framework. Use it to ensure your efforts are aligned with business growth 
and customer problems.

To dive into product experimentation further, check out my 
Experimentation + Testing Reforge program.

https://amplitude.com/blog/causation-correlation
https://amplitude.com/blog/7-step-experimentation-framework
https://amplitude.com/blog/7-step-experimentation-framework
https://www.reforge.com/programs/experimentation-testing?utm_source=amplitude&utm_medium=referral&utm_campaign=comarketing&utm_term=&utm_content=experimentation_playbook
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In recent years, big companies like Netflix changed the game when 
it came to offering personalized user experiences. 

The streaming platform provides users with tailored viewing 
recommendations based on viewing history, search query, and 
rating data. Instead of just showing one set of recommendations, 
Netflix also uses A/B testing to experiment with different 
suggestions and interfaces. With this experimentation, the  
platform can iterate and refine its platform in real time based on 
user preferences.

Until recently, this sort of work was only possible in large 
companies that could invest in machine learning technology and 
teams of data scientists running thousands of experiments every 
year. But this is no longer the case. Third-party applications like 
Amplitude Experiment put the power of feature management and 
experimentation into the hands of organizations of all sizes. 

Feature Management and 
Experimentation: Two Sides 
of the Same Coin

By Wil Pong 
Amplitude

Third-party applications like  

Amplitude Experiment put the  

power of feature management  

and experimentation into the  

hands of organizations of all sizes.

https://amplitude.com/amplitude-experiment
https://amplitude.com/amplitude-experiment
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As the head of experiment products at Amplitude, I have worked with 
data pioneers like Netflix, Uber, LinkedIn, and Microsoft. I specialize in 
democratizing advanced consumer-type techniques, such as feature 
delivery, for companies of all sizes. In this chapter, I will discuss the 
relationship between experimentation and feature management and 
how these help teams deliver personalized experiences.

How does feature management relate to 
experimentation?
Software’s big advantage over other products is that you can instantly 
change it. When you build a PS5 controller and ship it off, you can’t 
change the controller in that box once it leaves the factory. It’s already 
out there. We can change software as fast as we have ideas.

Through feature management, we can use techniques like feature 

flags that allow you to toggle on and off the specific features you 
want your users to experience. You can also toggle different features 
for specific user groups, or cohorts, based on their behavior or other 
characteristics. 

Using feature flags allows teams to test features in a production 
environment. Normally, new features are released to specific cohorts, 
not the entire user base. This way, development teams can gather user 
feedback before fully releasing new features. When teams deliver A/B 
tests, they go through this same process, which explains why technical 
teams view experimentation and feature management as synonymous. 

How does your experimentation system make 
targeting possible? 
It is critically important for your experimentation platform to have 
identity resolution built into it—meaning the solution can identify the 
same user even if they’re logging in from different devices or contexts. 
Without identity resolution, you risk misidentifying your users, leading to 
flawed experimentation and bad data. You could identify a power user as 
a new user just because they’ve logged in through a new device.

If identity resolution isn’t built into your platform, you will need to 
constantly ping other systems, like a CDP, to double-check your users’ 
identities. This will introduce more latency or lag to your system. You 
will also incur the high costs of building integrations and managing data 
pipelines between your platform and something like a CDP. 

When you combine feature management capabilities with accurate 
identity resolution, you suddenly have the ability to deliver highly 
targeted experiences to the right cohorts of users. For product and 
engineering teams, this is the pinnacle of A/B testing. 

When you can reliably harmonize user identity in your evaluation 
engine, you can create rules based on specific user attributes, like past 
behavior and geographic location. These rules give you control over 
who gets what features and when. 

For example, you can carry out an experiment where only your power 
users—people who log into your product more than three times a week 

https://help.amplitude.com/hc/en-us/articles/360061687311-Working-with-feature-flags-and-feature-rollouts
https://help.amplitude.com/hc/en-us/articles/360061687311-Working-with-feature-flags-and-feature-rollouts
https://amplitude.com/blog/identity-resolution
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and spend some minimum amount—get access to new deployments. 
You want to test a new feature with your most valuable users to see 
how they will react. 

This type of targeting is only possible when you have an evaluation 
system such as Amplitude Experiment that tracks the information 
needed to segment these cohorts. If your experimentation system 
does not have connections to this information, you’ll need to spend 
significant resources connecting to relevant data sources, like CDPs or 
data warehouses. 

How does feature management differ from a 
“WYSIWYG” approach?
The feature management approach to testing and deploying new 
features is made directly at the code level. Other approaches to 
deployment allow changes to be made on a surface level without 
altering code. One such approach is through “What You See Is What 
You Get” (WYSIWYG) user interfaces such as WordPress for websites 

or Appy Pie for apps. These interfaces allow companies to make 
deployments and experiment without using code. 

However, using WYSIWYG for deployment has significant limitations.

WYSIWYG only works in limited cases
WYSIWYG gives you a small subset of things you can alter and only 
works when you want to roll out changes for a fixed period. For 
example, your growth and marketing teams may need to launch 
holiday promotion coupons to new users through push notifications. 
This example is an ideal use case for WYSIWYG A/B testing. You can 
predominantly change colors, copy, or labels, which is why marketing 
teams have historically used it on landing pages or website copy 
changes. 

On the other hand, testing and deploying on a code level allows 
you to deliver a much wider range of experiences, whether they 
are short-term or long-term updates. An ecommerce company, for 
example, can use feature flags to stack rank its best products or new 
promotions on screen or run tests on their onboarding experience more 
holistically. Since you are making changes at the code level, product 
and engineering teams can have far more control and flexibility on the 
experiments and tests they choose to prioritize.

On the other hand, testing and 
deploying on a code level allows you 
to deliver a much wider range of 
experiences, whether they are short-
term or long-term updates.
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WYSIWYG is fast in the short 
term but slow in the long term
WYSIWYG is not built into the flow of rapid 
product innovation like CI/CD processes. 
Instead, these approaches lead to parallel 
processes for experimentation and product 
development. WYSIWYG-based tests may 
deliver actual value, but marketing teams will 
have to wait for product and engineering teams 
to have the capacity to deliver a long-term 
update, interrupting their typical workflow to add 
new capabilities to their product. As you can see, 
WYSIWYG is designed for experimentation with 
static or incremental changes, not complex or 
dynamic experimentation scenarios.

By using feature flags, engineering teams can 
build tests directly into their CI/CD processes, 
allowing them to make the necessary changes 
to backend systems and making it easy to roll 
out the winner once the test is complete. When 
combined with analytics, feature management 
also allows developers to get more data about 
every feature they release. This provides them 
valuable insight into their work’s impact on the 
broader organization—something that WYSIWYG 
tools will never provide. 

WYSIWYG-based tests may deliver 

actual value, but marketing teams 

will have to wait for product and 

engineering teams to have the 

capacity to deliver a long-term update.
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organizations through personalized experiences—even if you don’t have 
millions of users visiting or engaging with your product every day. 

If your experiment platform has a robust approach to identity 
resolution and delivery, product teams can deliver highly targeted 
experiments and feature releases using the same processes and 
technology that power the rest of your product development. This will 
ultimately drive rapid innovation without disrupting technical teams.

WYSIWYG slows down the performance of your 
application or web page
When you use WYSIWYG, you’re overlaying a website on top of your 
main website, which can negatively affect loading times—sometimes 
doubling or even tripling it. This overlaying can also lead to the flicker 
phenomenon—when a web page or application’s user interface changes 
or reloads, causing a visual disturbance or glitch that can distract 
users. This happens because changes to the visual interface are not 
immediately reflected in the code. 

There has also been considerable research highlighting that any 
impact on performance has a significant impact on conversion rates. 
At Amazon, a 100-millisecond slowdown experiment decreased sales 

by 1%. This stat helps to highlight why product and engineering teams 
need to be mindful of their experimentation solution’s performance. 

Although deploying features through WYSIWYG is much easier, it is 
ultimately not as extensive, effective, or efficient as using a feature 
management approach.  

Product experimentation delivers faster 
innovation and ROI without disrupting 
development cycles 
As the Netflix’s of the world have shown, product and engineering 
teams have a huge opportunity to deliver more ROI to their 

If your experiment platform has 
a robust approach to identity 
resolution and delivery, product 
teams can deliver highly targeted 
experiments and feature releases 
using the same processes and 
technology that power the rest of 
your product development.

http://glinden.blogspot.com/2006/04/early-amazon-shopping-cart.html
http://glinden.blogspot.com/2006/04/early-amazon-shopping-cart.html
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Critical Capabilities for Product and Engineering 
Teams to Scale Experimentation Programs

Product and engineering teams can stumble trying to build a data-driven culture when they focus too much 
on technology decisions before defining their specific business requirements. 

Once business objectives are defined, then product organizations 
should start looking for the essential capabilities they need to scale 
their experimentation platform. 

This section provides a baseline of functional capabilities that 
product and engineering teams should consider when investing in 
product-led experimentation.

Guide teams to deliver trustworthy 
experiments every time
Experiment design is a critical part of any A/B test. Teams new 
to A/B testing can suffer major data quality issues due to poor 
design and implementation. Best-in-class tools reflect testing 
best practices, helping teams deliver high-quality tests and make 
optimal product decisions. 

Another important consideration is the variety of testing capabilities 
your team needs to succeed and scale their programs. Mutual 
exclusion groups ensure teams can better manage simultaneous tests 
by restricting traffic across colliding tests. Holdout groups ensure that 
some traffic is restricted from ever being exposed to experiments, 
providing a new way for teams to baseline their tests.

KEY QUESTIONS

•	� Does the solution adhere to A/B testing best practices 
and key testing milestones like hypothesis development, 
targeting, delivery, allocation, monitoring, and analysis?

•	� Can I easily understand how much traffic and how long my 
test will need to run within the UI? 

•	� Can I seamlessly access my key metrics for my A/B tests? 
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Trustworthy statistical rigor and support for 
your most important use cases
Understanding the statistical rigor of your experimentation platform is 
another important consideration for product experimentation. While 
there is no “right” answer regarding the “best” statistical methodology, 
each approach does have its tradeoffs and advantages. Understanding 
your experiment platform’s approach is important in order to have the 
utmost confidence in your results.

Some statistical methodologies, like Sequential Testing, allow product 
teams to peek at results midstream without impacting their results. 
Whereas T-Tests are more popular, but require teams to wait until 
the test concludes to see their results - otherwise they risk degrading 
their results. While these differences may appear trivial, they can have 
profound implications for experimentation programs.

Another important consideration is the types of testing use cases your 
team needs to succeed. Teams can choose from a wide variety of use 
cases, including A/B tests, multivariate testing, multi-armed bandits, 
do no harm tests, quasi-experimentation, and more. Teams should also 
prioritize solutions with built-in capabilities to reduce the variance in 
their experiment data using advanced methodologies like CUPED and to 
solve the multiple comparisons problem like the Bonferroni Correction.

Selecting the vendors with the most capabilities available today may 
not always be the best solution for your team. Highly specialized point 
solutions can create major headaches for under-resourced engineering 
teams when they have to manage duplicative data sets, build and 

maintain expensive data pipelines, and manage kludgy integrations to 
run tests. It’s critical to understand the underlying technical challenges 
that may arise from adding another point solution to your stack. 

Teams should define what they need to be successful, what resources 
they have available, and the maintenance requirements for the solution 
(or combination of solutions) they choose.

KEY QUESTIONS

•	� What statistical methodologies are used in the solution? 
Some examples include Sequential Testing, Fixed Horizon 
T-Test, Two-sided T-Test, and Bayesian Inference. 

•	� Do I have the flexibility to alternate between different 
methodologies to design optimal experiments for my  
use case?

•	� If I peek at results during the test, can this skew my results?

•	� What types of experiments do I need to run to maximize my 
product investments?

•	� Will I need to build and maintain data pipelines or 
integrations to run effective experiments? 

•	� If I do need to leverage data pipelines and integrations, which 
team(s) will be responsible for ongoing maintenance?
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Managing user identity across devices for 
accurate targeting and allocation
One of the most crucial functional requirements for experimentation  
is the ability to manage user identity across devices and platforms - 
even if they are not logged in. Today’s user has multiple devices and 
is often not logged in, which adds considerable complexity for teams 
trying to gain a clear understanding throughout each step of the 
customer journey. 

While many solutions claim they can manage user identity, this 
requires more complex data mapping, deduplication, and scrubbing 
than product and engineering teams might recognize. Attempting to 
map devices across platforms and user identities quickly becomes 
extremely complicated at scale and using a disparate tech stack. All 
of these tools and data sets have to be stitched together using brittle 
integrations and expensive data pipelines. This leaves engineering 
teams in a difficult spot to maintain it and leaves analysts to try to 
make sense of it all.

Without the ability to harmonize user identity, it becomes next to 
impossible to confidently target experiments and releases across 
devices and platforms. When teams can’t resolve user identity, it 
becomes far more likely to suffer degraded experiment results due to 
sample ratio mismatch or variant jumping. 

But with natively integrated capabilities across analytics and 
experimentation, these challenges disappear since you have one 
unified data set. You have the flexibility to accurately target specific 

users, cohorts of users, accounts, and even attributes like user 
operating system, device type, geography, user behavior, and more.

This also ensures teams can test using sticky bucketing meaning that 
users will only see one variant during a test regardless of which device 
they use.

The ability to resolve user identity is a critical piece to get right for 
every experimentation program. When product and engineering teams 
evaluate experimentation capabilities, this is one of the most important 
ones to get right. Otherwise, teams will struggle to successfully drive 
ROI from product-led experimentation.    
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Deliver reliable experiment data with 
automated data checks 
One of the benefits of using pre-packaged experimentation  
platforms is the ability to improve data quality and reliability using 
automation. While teams can run stats packages on data sets in  
Python or R to determine statistical significance, this leaves teams 
open to missing potential data quality issues like sample ratio 
mismatch (SRM) or variant jumping. This is easily missed because 
using stats packages only evaluated the results of the test—not if the 
test was implemented correctly.

With built-in data guardrails, an ideal solution should automatically 
identify and notify teams about potential issues before they degrade 
experiment data—not after. By automatically checking for these issues 
in-app, teams can be confident that their results and approach which 
leads to trustworthy data and analysis.

KEY QUESTIONS

•	� Does the solution help teams remediate issues like sample 
ratio mismatch (SRM) or variant jumping?

•	� Does the solution support changepoint detection?

•	� Does the solution help identify potential outliers?

Best-in-class analytics and instrumentation for 
accurate and trusted results 
You need robust data visualizations and deep analytics capabilities 
for successful experimentation. Analytics and tracking enable teams 
to interpret the results of an experiment and deeply understand the 
performance of each test drove. Without these capabilities, your team 
will have a difficult time deciphering what happened and will slow 
down your velocity since teams will spend more time debating what 
they should do next. 

Some teams rely on an analytics point solution to visualize results 
and run deeper analyses. While this can work, it often results in teams 
getting double-charged for data events across multiple tools, wasting 
resources and budget. If teams can visualize data, drill down into key 
audiences, and get a deeper understanding of their experiments all in 
one platform, they are better positioned to make data-driven decisions 
faster and with less overhead.

Teams also benefit from the ability to seamlessly create and share 
dashboards about each experiment. The best solutions can summarize 
all of the relevant information about each experiment including the 
research behind the test, the initial hypothesis, targeting, analysis of 
each variant, and the ultimate decision made at the end of the test. 
This enables teams to easily share insights and improve collaboration. 
Easily shareable insights also help teams democratize learning across 
the entire product organization.
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Teams should also consider how they will ensure standard metrics 
definitions across their stack, which often leads to inconsistent data. 
While this may seem like a trivial inconvenience, it quickly leads to 
painful consequences. Even if someone adds a filter to a data set in  
one platform, this can lead to inconsistent test results and harm  
data-driven cultures. 

When executives and other teams see inconsistent data, no one can  
trust any shared insights, ultimately slowing teams down. While teams 
can try to alleviate this concern with data pipelines, the maintenance 
required to stand them up leads to significant headaches, high costs,  
and does not eliminate the risk of inconsistent data. 

KEY QUESTIONS

•	� How do you visualize experiment results? 

•	� How do I integrate your solution with my analytics platform? 

•	� Will this integration lead to extra data consumption charges?

•	� How can I ensure consistent metrics definitions within my 
experiment across platforms?

Manage scaled programs and unblock teams 
with seamless program management and in-
depth support 
Teams looking to scale experimentation need to be able to manage 
their entire experimentation program, which could consist of dozens of 
experiments and releases simultaneously. 

Each release goes through a specific set of milestones throughout its 
lifecycle and program managers need to be able to quickly understand 
what to do next rather than try to keep track of their programs on an 
ad hoc basis. Solutions that support sorting, filtering, and organizing 
experiments and releases help teams manage multiple experiments 
simultaneously.
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KEY QUESTIONS

•	� How do I manage multiple experiments 
and releases simultaneously?

•	� Can I easily create, archive, or edit my 
experiments and releases?

•	� Where can team members get support if 
they get stuck? 

•	� Are there support resources available like 
in-app guides, online learning modules, 
community forums, and documentation?

Another consideration is supporting less experienced 
team members within the experience. Access to 
better education resources, professional services, 
user communities, and clear documentation unblocks 
and upskills team members more quickly than relying 
on a single person or team. These capabilities help 
experimentation programs scale. 

Access to better education 

resources, professional services, user 

communities, and clear documentation 

unblocks and upskills team members 

more quickly than relying on a single 

person or team. These capabilities help 

experimentation programs scale.
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Safely deliver releases without sacrificing 
performance
Engineering teams need solutions that align to their preferred workflow 
and CI/CD processes. Best-in-class experimentation platforms 
leverage enterprise-grade feature management capabilities to deliver 
targeted experiences and releases safely. You also need the ability to 
process data in near real-time to truly understand each test’s impact 
for on-the-fly analyses.

Another consideration is the latency that your tests will add to your 
user experience. Since latency will always negatively impact your 
conversion rates, this is a tradeoff teams need to understand as they 
build their experimentation programs. There can be scenarios where 
adding milliseconds of latency is worth it if you can incorporate user 
context into your tests. Teams must define this for themselves but 
should consider performance before investing in a solution. 

KEY QUESTIONS

•	� How does the solution deliver experiments? 

•	� How quickly does the solution process data? 

•	� How much latency is introduced with the  
experimentation platform?

KEY QUESTIONS

•	� Does the solution have client-side SDKs in the languages  
I need?

•	� Does the solution have server-side SDKs in the languages  
I need?

•	� Does the solution offer an API to manage experiments and 
release programmatically?

•	� Does the solution have integrations to my core systems like 
data warehouses and analytics platforms?

Best-in-class developer tooling and extensibility 
into my core systems
Developers need the right technical tools to successfully implement 
experimentation platforms. Specifically, they need client-side 
and server-side SDKs to implement tests in their environment’s 
programming languages. 

They will also need robust APIs to deliver experiments and manage 
releases programmatically. Teams should also consider what 
integrations they need to connect experiment data to their broader 
data ecosystem and tech stack.
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Enterprise-grade security, compliance, 
governance, and scalability
If your solution does not adhere to best-in-class security compliance, 
governance, and scalability, you will add significant risk to your 
organization. While these certifications and capabilities are not central 
to the core user experience, they are critical to your program’s success. 

Ensure you understand which security certifications your solution 
complies with, how robust user access controls are, the ability to 
audit changes to experiments and releases, and how well their data 
infrastructure can dynamically scale. You should also understand how 
many tests you can run simultaneously with your platform of choice.

KEY QUESTIONS

•	� What security certifications does the solution have today? 

•	� Does it provide SSO?

•	� What level of roles-based access controls does it include?

•	� Can the platform scale dynamically at data volume?

•	� Are there any limits to the number of experiments I can 
perform at any time?
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CAPABILITIES DESCRIPTION PRIORITY?  
(Must have, Should 
have, Nice to have)

CAPABILITY RATING (0 TO 3)

Hypothesis generation Ability to define hypothesis in-app 3 - Available 
0 - Not available

Metrics selection Ability to leverage key analytics metrics for 
experiments

3 - Available 
0 - Not available

Guardrail metrics Ability to select guardrail metrics within an 
experiment

3 - Available 
0 - Not available

Sample size calculation Ability to understand how long an experiment 
will need to run in order to reach statistical 
significance

3 - Available 
0 - Not available

Experiment templates A standardized set of metrics and segments for 
every experiment or release

3 - Available 
0 - Not available

Holdout Groups Designate traffic to never see experiments for 
baselining purposes

3 - Available 
0 - Not available

Mutual Exclusion 
Groups

Separate colliding tests to ensure experiment 
traffic is not shared

3 - Available 
0 - Not available

Long-running 
experiments

Ability to analyze tests outside of their experiment 
duration window and view historical results

3 - Available 
0 - Not available

Experiment Design
FUNCTIONAL REQUIREMENTS

Bringing it all together: Critical capabilities to deliver experimentation at scale
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CAPABILITIES DESCRIPTION PRIORITY?  
(Must have, Should 
have, Nice to have)

CAPABILITY RATING (0 TO 3)

Offers statistical 
analysis  
out of the box

Statistical approaches include: 
• Sequential testing
• Fixed Horizon T-test
• Two-sided T-test
• Bayesian Inference
• CUPED
• Bonferroni Correction

3 - Multiple methods available
2 - One method available
0 - Stats analysis outside of the application

Supports the 
experimentation use 
cases we need today

Common use cases include: 
• A/B Tests
• Multivariate testing
• Nested experiments
• Do no harm tests
• Multi-armed bandits
• Quasi-experimentation

3 - Supports all use cases I need 
2 - Supports all but 1 use case
1 - Supports some use cases
0 - Supports none of my use cases

Experimentation Use Cases
FUNCTIONAL REQUIREMENTS
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CAPABILITIES DESCRIPTION PRIORITY?  
(Must have, Should 
have, Nice to have)

CAPABILITY RATING (0 TO 3)

Managing user identity  
for known and 
anonymous users

Ability to connect user ID to device ID across 
platforms at scale without development effort

3 - Available natively
1 - Support requires data pipelines, integrations
0 - Not available

Cross-platform testing Ability to test across devices and platforms 
natively

3 - Available natively
1 - Support requires data pipelines, integrations
0 - Not available

Targeting Ability to target a variety of use  
cases natively: 
• By user
• By user cohort
• �By any user property (platform, device, geo)
• By user behavior

3 - Available natively
1 - Support requires data pipelines, integrations
0 - Not available

Randomization The methodology used to randomize traffic 
which can also include stratified sampling

3 - Available
0 - Not available

Sticky bucketing Ensure users will see the same variant even if 
your experiment’s targeting criteria, percentage 
rollout, or rollout weights are changed

3 - Available natively
1 - Support requires data pipelines, integrations
0 - Not available

Account-level 
bucketing

Ability to bucket traffic by account level rather 
than only user-level

3 - Available 
0 - Not available

Allocation and Targeting
FUNCTIONAL REQUIREMENTS
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CAPABILITIES DESCRIPTION PRIORITY?  
(Must have, Should 
have, Nice to have)

CAPABILITY RATING (0 TO 3)

Robust data 
visualizations

Ability to visualize results across a variety of 
charts

3 - Available natively
1 - Support requires data pipelines, integrations
0 - Not available

Statistical 
visualizations

Ability to visualize statistical concepts like 
confidence intervals, statistical significance 
achieved, and more

3 - Available natively
1 - Support requires data pipelines, integrations
0 - Not available

Drill down into results 
and visualizations

Ability to drill into charts for deeper insights 3 - Available natively 
0 - Not available

Dashboards and 
reporting

Ability to add experiments to dashboards for 
knowledge sharing and collaboration

3 - Available natively 
0 - Not available

Ability to segment by 
user behavior, any user 
cohort, group of users, 
or by any user property

Native segmentation for deeper insight into  
sub-groups that are under or over-performing 
relative to the rest of your users
• By user behavior
• By any user cohort
• By any user property (platform, device, geo)

3 - Available natively 
0 - Not available

Recommendations on 
the next best action

Guided interpretation of your results and clear 
recommendations for your next best action

3 - Available
0 - Not available

Metrics, Analytics, and Data Visualization
FUNCTIONAL REQUIREMENTS
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CAPABILITIES DESCRIPTION PRIORITY?  
(Must have, Should 
have, Nice to have)

CAPABILITY RATING (0 TO 3)

Proactively identify 
potential data quality 
errors

Debug and notify teams about critical data 
quality errors

• Sample ratio mismatch (SRM)

• Variant jumping

• Exposure events without assignment events

• Suspiciously high uplift detection

• Changepoint detection

•  Outlier detection

3 - Available natively

1 - Support requires data pipelines, integrations

0 - Not available

Data Guardrails
FUNCTIONAL REQUIREMENTS

View experiment or 
flag impact to any 
metric

Understand how each test impacts key KPIs 
using multiple types of data visualizations

3 - Available
0 - Not available

Metrics definitions Ability to define and manage metrics within the 
UX without managing data pipelines

3 - Available natively
0 - Not available

Consistent metrics 
definitions across apps

Native ability to ensure consistency across apps 3 - Available natively
0 - Not available
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CAPABILITIES DESCRIPTION PRIORITY?  
(Must have, Should 
have, Nice to have)

CAPABILITY RATING (0 TO 3)

Lifecycle management Manage simultaneous tests to understand 
the next required action and the number of 
experiments and releases across my team. Ability 
to filter active, archived, or completed tests.

3 - Available
0 - Not available

Lifecycle updates Ability to rollout, rollback, create, delete, or edit 
tests without developer intervention

3 - Available
0 - Not available

In-app notifications In-app guidance to remediate key issues or 
when key testing milestones are met including 
reaching stat sig, experiment completion, and 
more

3 - Available
0 - Not available

Support available 
in-app

Assist teams new to experimentation directly 
from the application

3 - Available
0 - Not available

Professional services Offerings focused on implementation, training, 
and onboarding

3 - Available
0 - Not available

Self-paced learning 
resources

Access to interactive learning modules 3 - Available
0 - Not available

Access to user 
communities

Fosters a user community 3 - Available
0 - Not available

Online help and 
documentation

Access to up-to-date documentation and help 
resources

3 - Available
0 - Not available

Program Management
FUNCTIONAL REQUIREMENTS
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CAPABILITIES DESCRIPTION PRIORITY?  
(Must have, Should 
have, Nice to have)

CAPABILITY RATING (0 TO 3)

Feature flags Deliver experiments using feature flags for full 
stack experimentation

3 - Available
0 - Not available

Data processing in  
near real-time

Ability to analyze data at near real-time 3 - Refresh data at least once per minute
1 - Refresh data at least hourly
0 - Slower than one hour

Evaluation 
performance

Expected latency during an experiment and 
understanding of what tradeoffs are made

Flexible approach to 
evaluation scenarios

Ability to select remote or local evaluation 3 - Available
0 - Not available

Experiment on  
user context with  
high-performance

Deliver highly performant experiments with 
user context

3 - Available
0 - Not available

JSON payloads Ability to inject JavaScript into each variant for 
on-the-fly adjustments to text, colors, images, 
and more

3 - Available
0 - Not available

QA checks Ability to QA tests or flags before they are  
rolled out

3 - Available
0 - Not available

Progressive rollout Define allocation percentage for rollout 3 - Available
0 - Not available

Rollback Ability to roll back a test and restore to a 
previous version if necessary

3 - Available
0 - Not available

Delivery and Performance
FUNCTIONAL REQUIREMENTS
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CAPABILITIES DESCRIPTION PRIORITY?  
(Must have, Should 
have, Nice to have)

CAPABILITY RATING (0 TO 3)

Client-side SDKs 
available

Languages:  
• Android 
• iOS 
• Web
• React Native
• ________

3 - Key languages available
2 - Most languages available
1 - Some available
0 - Not available

Server-side SDKs 
available

Languages:  
• Node 
• JavaScript 
• Python
• ________

3 - Key languages available
2 - Most languages available
1 - Some available
0 - Not available

API support to manage 
experiments and flags 
programmatically

Offers API access import and export of data 3 - Available
0 - Not available

Integrations with your 
core technology

• Snowflake
• Slack
• Braze
• ________

3 - Key integrations available
2 - Most integrations available
1 - Some available
0 - Not available

Integration with product 
analytics

Integration with analytics platforms like 
Amplitude

3 - Available natively
1 - Support requires data pipelines, integrations
0 - Not available

Recommendations on 
the next best action

Guided interpretation of your results and clear 
recommendations for your next best action

3 - Available
0 - Not available

SDKs, APIs, and Extensibility
FUNCTIONAL REQUIREMENTS
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CAPABILITIES DESCRIPTION PRIORITY?  
(Must have, Should 
have, Nice to have)

CAPABILITY RATING (0 TO 3)

Security certifications 
critical to my business

• SOC 2 Type 1 
• SOC 2 Type 2 
• ISO27001 
• ISO27018 
• GDPR 
• CCPA 
• HIPAA

3 - Offers all certifications I need 
2 - Offers all but one key certification
1 - Offers some certifications I need
0 - Not secure enough for my business

Single Sign-On (SSO) Offers SSO 3 - Available
0 - Not available

Data encryption Ensures data is fully encrypted 3 - Available
0 - Not available

Robust user 
permissions

Offers robust roles-based access controls 
across teams and projects

3 - Available
0 - Not available

Audit of changes and 
updates

Ability to quickly understand when changes 
were made to flags and experiments

3 - Available
0 - Not available

Elastic scalability Ability to scale dynamically as traffic increases 3 - Available
0 - Not available

Experimentation at 
scale

No limits to the number of tests that can be run  
in parallel

3 - Available
0 - Not available

Security, Compliance, Governance, and Scalability
FUNCTIONAL REQUIREMENTS
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For a growing company to thrive and remain competitive, it  
needs experimentation at the core of its product development  
process. Experimentation capabilities allow companies to run  
product performance tests, collect data, and analyze results. They 
provide insights about user behavior and preferences that help 
companies create sticky user experiences, improve conversions,  
and drive engagement.

A frequently asked question is: Should a company build its 
experimentation tool or purchase one from a third-party vendor? The 
age-old debate of build vs. buy is challenging due to the complexity of 
experimentation platforms, the costs and resources required, and how 
each option aligns with your overall strategy. 

 I have worked on data experimentation with companies like 
Convoy, Microsoft, and SEPHORA, where I have had to build and buy 
experimentation platforms. In this chapter, I will discuss the most 
common trade-offs product and engineering teams should consider 
when deciding whether to build or buy an experimentation platform.

Build vs. Buy: A Guide 
to Selecting Your 
Experimentation Platform

By Chad Sanderson

Successful experimentation platforms enable 
faster innovation, data-driven cultures, and 
better stakeholder alignment 
Before discussing the specific tradeoffs associated with each choice, 
let’s start with what success looks like. Success is validating new ideas 
before fully deploying them using an experimentation platform. This 
is a game-changing and magical experience for many product and 
engineering teams. 

Without an experimentation platform, product and engineering teams 
launch new features without knowing how their core metrics are 
impacted. There’s a lot of guesswork involved. Experimentation tools 
allow teams to easily and concretely measure performance, simplifying 
their decision-making process on what to invest in. 
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Before teams decide whether to build vs. buy, they need to define 
the key metrics and KPIs they will measure. If your experimentation 
tool doesn’t let you measure the impact of testing with key business 
metrics—like revenue or profit margin—it’s hard to justify the ROI of 
experimentation in general. 

We needed to overcome the measurement challenge while I was at 
Convoy. At Convoy, the entities we cared most about were shipments, 
contracts, facilities, and geographic regions. As we began to evaluate 
the build vs. buy question, we needed experimentation capabilities to 
align with our product development philosophy. That is, we needed an 
experiment for any feature deployment or release that could affect any 
of these entities. This was a mandatory requirement for our build vs. 
buy decision.

The right experimentation capabilities have advantages beyond faster 
innovation. They can also help win buy-in from leadership and other 
stakeholders. For example, a CPO often needs to justify additional 
investment and resourcing from their CFO. Experimentation platforms 
can provide beneficial reporting and analytics to highlight which product 
updates have generated meaningful ROI and how new investments can 
continue delivering innovation and value to the organization. 

How to approach the build vs. buy decision
When organizations recognize they need to invest in experimentation 
capabilities, they face a decision: Do I build a tool from scratch, or do I 
buy a pre-packaged solution instead? 

Product and engineering teams should evaluate these five factors when 
they consider the build vs. buy question: 

1.		� Cost: How much will buying an out-of-the-box solution cost compared 
to building your in-house solution? When determining the cost of an 
in-house solution, make sure to account for line items like hiring and 
training developers, hardware and software expenses, integrations, 
and ongoing maintenance. For pre-packaged software, consider 
licensing costs as well as training and services. 

2.		� Time: How long will building your software in-house take as opposed 
to purchasing and onboarding a pre-built solution?

The right experimentation 
capabilities have advantages 
beyond faster innovation. 
They can also help win buy-
in from leadership and other 
stakeholders.
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3.		� Expertise: Does your current team have the technical know-how to 
build and maintain experimentation software?

4.		� Customization: Do the pre-built solutions available meet your 
company’s specific needs and requirements?

5.		� Competitive advantage: Consider whether building software in-
house or a pre-built solution will offer features that help you build 
better products than your competitors.

Ultimately, the decision to buy or build software depends on your 
specific needs and the resources you have available. Careful  
evaluation of these factors can help determine the best option for  
your organization.

The “build” argument: Pros and cons
Building your experimentation solution might sound like a good idea, 
particularly if you have the resources to do it, but it has its trade-offs. 
Here are some pros and cons of building in-house based on the five 
factors mentioned above: 

The advantages of building your experimentation platform include: 

	� It allows for more customization. If your company has unique 
needs that existing experimentation platforms cannot meet, it may 
be necessary to build your platform. For example, if you need to 
integrate with a specific data source or use a custom statistical 
algorithm, building your own platform may be the best option.

	 �It gives you access to all of your data. Building your solution gives 
you access to your own databases, data lakes, or data warehouses. 
You can carry out anything from aggregations to writing SQL—your 
data never has to leave your system. 

	 �It might give you a competitive advantage. Building your 
platform gives you flexibility. You can customize the tool to meet 
the changing needs of your organization. In the process, you may 
have created software that addresses a need not yet solved in  
the market. 

	 �If you deal with large volumes of experiments and experiment 
data, it can be more cost-effective. By building your platform, 
you’ll have more control over resources and will be less dependent 
on external providers.

But there are some considerable drawbacks to building your solution:

 	 �It is very expensive. Building your experimentation platform can 
be costly and time-consuming. If you’re building your platform 
internally, that’s a minimum of three to four engineers, one to two 
data scientists, a product person, and a manager to oversee the 
project. This can cost organizations millions of dollars to maintain 
that system every year.

 	� It is time-consuming. Building from the ground up will take 
significantly longer than buying a solution out of the box and could 
take several quarters to create a functioning MVP, let alone a 
production-ready solution. 
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 	 �It requires specific expertise. Building your experimentation 
platform requires a high level of expertise in software 
development, data analysis, and statistical modeling. If you have 
a team with the necessary skills, building your own platform may 
be a viable option, but your team members will need to spend the 
bulk of their time on this project. The other challenge is having a 
backfill plan to replace this expertise if a team member leaves your 
organization.

Building your experimentation solution requires significant expertise 
and resources, but it may be worthwhile in the right organization.

The “buy” argument: Pros and cons
Alternatively, there are several reasons why it may be better to use an 
existing experimentation platform. Out-of-the-box solutions get the job 
done for the majority of companies since many company requirements 
are not that complicated.

Here are a few pros and cons of buying pre-built experimentation 
software based on the five factors mentioned earlier:

The advantages of buying an experimentation platform include: 

	 �It is highly cost-effective. More often than not, using an existing 
experimentation platform is significantly cheaper than building  
one yourself. 

	 �It requires much less time to get started. One of the major 
advantages of purchasing out-of-the-box solutions is that you can 
get started immediately, particularly if you find a solution with 
short onboarding timeframes. 

	 �It’s not as time-consuming for your dev teams. Building your own 
solution will take up most, if not all, of your development team’s 
time and resources. Buying a pre-built solution frees them to focus 
on running experiments and other business-critical tasks. 

	 �It doesn’t require specific expertise. The main reason you would 
want to build your own solution is that you have robust and 
complicated feature requirements and the resources available to 
execute. In these cases, it is unlikely that your sales or marketing 
teams will figure out how to use it. Ready-built solutions are easy 
to use, which helps organizations achieve data democratization. 

	 �You still have access to experts. Most pre-built software plans 
provide access to experts who have already developed and tested 
the software.

	 �Many pre-built solutions are designed to have a degree of flexibility 
and customization. It might not be as much customization as an 
in-house solution, but you may still be able to achieve your desired 
functionality.

	 �Quicker time to market. The time you save in purchasing a pre-built 
solution means you enjoy much faster time to market, which will 
give you an edge over competitors. 
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While there are considerable advantages to buying an experimentation 
platform, a few tradeoffs also exist:

 	� There are typically fewer customization options. But it’s important 
to consider whether customization is necessary and whether you 
can achieve it on some level with a pre-built solution. 

 	� No competitive advantage. You may not have the competitive edge 
of a unique software, but this might not be a priority, especially if a 
pre-built solution provides more functionality than what you could 
develop in-house. 

Established experimentation platforms have also been tested and used by 
a large number of users, so they’re often more reliable and stable than a 
custom-built solution. And most out-of-the-box solutions come with easier 
integration requirements with other in-house solutions you’re running. 

Making the decision: Build or buy?
Ultimately, whether or not to build your experimentation platform 
from scratch or buy an out-of-the-box solution comes down to two 
factors—purpose and resources. You first need to figure out what 
your requirements are. If something on the market meets those 
requirements, you have your answer. 

It simply doesn’t make much sense to build something that another 
product is already doing better and will cost you less. Pre-built 
solutions are the product of massive teams of experts with diverse skill 
sets who do all the legwork, so you don’t have to. Since these products 
are built at scale, they are also more cost-effective.

Considering the huge costs of building your experimentation solution, 
organizations should only opt for this route when the opportunity cost 
of not building exactly what you need is very high. But if you evaluate 
this critical decision based on the five key factors—cost, time, in-house 
expertise, customization needs, and competitive advantage—your 
organization can create a data-driven product culture.
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In this chapter, we will show how product, data, 
and engineering teams can work together to scale 
product-led experimentation. You will learn how 
Amplitude’s unified Digital Analytics Platform drives 
efficient innovation through natively integrated 
experimentation with self-serve analytics.

Today, we are part of the product organization  
at AmpliStore. At Amplistore, our focus is to 
encourage more users to join our loyalty program. 
This is a key goal for our business since Amplitude 
Analytics has demonstrated that users who join the  
loyalty program have higher revenue per user and 
better retention.

For our demonstration, we will highlight how Product 
Managers, Data Analysts, and Engineers can work 
together to build a culture of experimentation built 
into the core of their product development process.

How Amplitude  
Experiment Guides 
You to Scale 
Experimentation

Amplitude’s unified Digital 
Analytics Platform drives efficient 
innovation through natively 
integrated experimentation with 
self-serve analytics.By Audrey Xu  

Amplitude
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Maximize your experimentation program with end-to-end lifecycle management

Product teams understand the value experimentation delivers to their 
product experience. But managing a scaling experimentation program 
is challenging when your team could be running dozens of experiments 
at a time. Product teams need to understand the status of every test 
running and be guided to their next best action in one view. This is 
exactly what Amplitude Experiment was designed to do. 

When you open the Experiment homepage, you will see an at-a-glance 
overview of every experiment in your program. At the top of the page, 
the Summary Card provides guidance about which experiments are 
ready for a decision, making it easy to manage AmpliStore’s entire 
experimentation program from the homepage.

After reviewing the loyalty experiment, it’s clear this experiment variant 
won based on its performance relative to our control variant. Now, we 
can easily roll out this variant to the rest of our users in a phased roll 
out. We can also add this to our Notebook, which provides the rest of 
our product organization a clear view into the insights that guided us to 
run this experiment, the hypothesis we created, the metrics used, our 
variants, and ultimately the outcome of the test.

Notebooks help us build a culture of experimentation and learning 
at AmpliStore by democratizing our learnings to the rest of the team, 
improving collaboration.

https://amplitude.com/amplitude-experiment
https://help.amplitude.com/hc/en-us/articles/360016281172-Notebooks-Explain-important-insights-to-teammates-and-stakeholders
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Ensure high-quality experiments and trusted 
results with a workflow-based UX 
As a Product Manager at AmpliStore, I am constantly using Amplitude 
Analytics to better understand what users are doing (or not doing)  
in my product. I create a Funnel Analysis chart to understand how  
often users join the loyalty program after completing a purchase  
at AmpliStore. 

I quickly realize that this cohort of users is not joining our loyalty 
program. Conversion rates are currently at 12.3%, but we had 
expected closer to 24% conversion based on the exclusive discounts 

we offered as part of a recent release. These users are still completing 
purchases but not joining the loyalty program—the conversion event we 
want to drive. 

I use the Microscope and create a new cohort—“Users who completed 
purchase but did not join loyalty program”—with one click. This 
cohort is now available for me to run a targeted experiment on them 
since these capabilities are natively integrated in Amplitude’s Digital 
Analytics Platform. 

I take these insights to our engineering and design teams to have 
them build out the code for our test. While they build the code, I 
select “Create new Experiment” in Amplitude. When I create a new 
experiment, I start in the Plan tab. Amplitude Experiment incorporates 
a workflow-based design built to ensure teams adhere to best 
practices for experimentation. One of the primary ways teams suffer 
from degraded results is from poor experiment design. Our product 
is purposefully designed to automatically incorporate these best 
practices through our user experience, ensuring teams can trust their 
results at every step.

Our product is purposefully designed 
to automatically incorporate these 
best practices through our user 
experience, ensuring teams can trust 
their results at every step.

https://amplitude.com/blog/funnel-analysis
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Next, we add our primary metric, “Loyalty Program Signups” to  
our experiment. The drop-down shows me that every event and  
metric tracked in Amplitude Analytics is automatically available to  
us in Experiment. 

That means we do not need to worry about consistent metrics 
definitions across our analytics and experimentation platforms—a 
common and potentially costly challenge when teams have disparate 
tech stacks. With a unified stack, teams no longer have to build and 
manage data pipelines or suffer from targeting limitations.  

I now have access to our built-in Sample Size Calculator to understand 
how long this test will need to run before we reach statistical 
significance based on AmpliStore’s traffic. We select “Install App” as 
our proxy metric since we assume that this action is correlated with 
“Loyalty Program Sign Up” since customers downloading our app are 
more likely to join our loyalty program than customers who do not.
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Deliver targeted experiments with full control 
After engineering finishes building and reviewing the code, they configure the feature flag to the appropriate deployment and add the code for each 
variant directly into the user interface. Amplitude Experiment delivers each test using flags, ensuring each variant is delivered safely to each end user.
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I configure the roll-out percentages and add the “Users who completed purchase but did not join loyalty program” cohort identified in Analytics for 
targeting. This is one of three ways teams can target users within Amplitude—user device ID, rule-based segments, or non-targeted users.

Now that our experiment is set up, we can activate the experiment. 

A few days later, I want to see how the experiment is going. Amplitude Experiment uses sequential testing for our stats analysis, so I can safely “peek” 
at the results as they happen without worrying about skewing our experiment data. This is a major advantage for product teams since it allows them to 
quickly understand the progress of the test as it happens rather than waiting until the experiment is completed like with a fixed-horizon T-Test.

https://help.amplitude.com/hc/en-us/articles/4403176829709-How-Amplitude-Experiment-uses-sequential-testing-for-statistical-inference
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Remediate data quality issues faster to improve your results

A week into the test, I get an email notifying me of a potential issue with the Implementation & 
Instrumentation of our experiment. Our data quality checks are highlighting that our test may 
be experiencing Variant Jumping, a major we might be suffering from Variant Jumping, a major 
problem with our results. 

I head to the Monitor tab and immediately notice an issue: exposures and assignments are 
supposed to be at 50/50 but are misaligned. This means some users likely see both variants 
within the same test. Since experimentation requires completely randomized and independent 
data sets, we probably have some serious issues with our results.

The Analyze tab shows that the data quality checklist clearly highlights the issue, guiding me 
to quickly remediate it.
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I work with engineering to resolve the issue quickly. 
Engineering seamlessly rolls back the test and restores the 
previous version using Experiment’s robust feature flagging 
capabilities. Engineering opens up Analytics and realizes an 
implementation issue with Android users. Amplitude tracks 
user “platform” as a user property and seamlessly manages 
user identity across devices, making it easy for engineering to 
identify which user cohort experienced the issue.

Engineering rewrites the code to fix the issue. Since Analytics 
and Experiment are natively integrated, it is easy to identify 
challenges, get notified to act, and resolve the issue with help 
from engineering.

And now, I am ready to re-run the experiment. 

Analyze your results and safely deliver 
the new experience to your users 
After re-running our test and letting it run for two weeks, I 
am automatically notified by email that we have achieved 
statistical significance. I connect with my data analyst team 
to review the results. 

Since our analysts understand and trust Sequential Testing 
and the data quality checks built into Amplitude Experiment, 
they are comfortable with the test results. This saves our 
data analysts a significant amount of time and allows them 
to focus on higher-value analyses while unblocking me to 
innovate our product experience faster. 

Since Analytics and 

Experiment are natively 

integrated, it is easy to identify 

challenges, get notified to act, 

and resolve the issue with help 

from engineering.
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Based on our test, we achieved a statistically significant lift in our loyalty program sign up conversion from 23.7% to over 32.1% based on our 
changes—and much closer to our business targets. 
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After I meet with my data and engineering counterparts, we are ready 
to roll out the winner to more users. Engineering uses a progressive roll 
out to increase the traffic from 10% to 100% of users, which gives us 
the confidence that our efforts will Loyalty Program signups and add 
significant value to our business.

AmpliStore’s product organization can now scale our experimentation 
program by connecting analytics and experimentation in one unified 
platform. This helps us accelerate innovation and maximize our product 
investments. We can also significantly reduce product development 
cycles through better collaboration across product management, 
engineering, and data teams. 
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Built with product-led experimentation in mind, Amplitude Experiment 
brings the same rigor to experimentation that distinguishes Amplitude 

Analytics. In this chapter, we’ll explore how the platform works, 
including its testing methodology and the automated features and 
other tools designed to help you conduct scientifically sound tests that 
yield results you can trust.

Testing methodology
Most experiments fall into two categories: “hypothesis testing” and 
“do no harm.” “Hypothesis testing” refers to experiments that use data 
to determine which variant to roll out based on performance. If none 
of your variants outperform the control, then in most cases, it makes 
sense to stick with the control experience.

“Do no harm” experiments are used to confirm that a change will not 
significantly harm key metrics. This type of experiment is often used for 
design system alterations or to mitigate risk.

How Experimentation  
Works in Amplitude

By Akhil Prakash and Kathy Qian 
Amplitude

Of course, there are cases where an experiment does not reach 
statistical significance. When this happens in hypothesis testing, 
Amplitude recommends reverting to the control. For do no harm 
experiments, we recommend rolling out the higher-performing 
variant based on the direction of the primary metric. If the direction 
is “increase,” roll out the treatment with the most positive lift; if the 
direction is “decrease,” roll out the variant with the most negative lift.

Sequential testing 
Amplitude Experiment offers multiple statistical methodologies 
for hypothesis testing that can be configured directly from the user 
experience. One of the most popular methodologies used by product 

https://amplitude.com/amplitude-experiment
https://amplitude.com/amplitude-analytics
https://amplitude.com/amplitude-analytics
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teams is sequential testing due to its built-in advantages, chiefly the 
ability to “peek” at the results throughout the experiment, without 
degrading your results. Our specific version of sequential testing, 
mixture Sequential Probability Ratio Test (mSPRT), allows you to peek as 
many times as you want—and you don’t have to decide on a number 
before the test starts, as you would with a grouped sequential test. As 
a result, you can decrease the experiment duration if the effect size is 
much bigger than the minimum detectable effect (MDE).

Another advantage of sequential testing is that it does not require 
users to know how to use a sample-size calculator, which can be 
challenging for non-technical team members. Instead, Amplitude pre-
populates the sample-size calculator with standard industry defaults 
(95% confidence level and 80% power), computing the control mean 
and standard deviation (if necessary) over the last seven days. 

In sample-size calculators, there is typically a field called “power” 
(1- false negative rate). With sequential testing, this field is essentially 
replaced with “how many days you are willing to run the test for.”  
This is a much more accessible number for most product and 
engineering teams.

T-tests
In addition to sequential testing, Amplitude Experiment offers fixed 

horizon T-testing, a standard methodology familiar to any data scientist. 
T-tests are valuable for their precision and are best used when sample 
sizes are small. They can also be useful when ending an experiment 

early might risk skewing the results, such as overweighting certain days 
or weeks—an issue where a product’s seasonality comes into play. For 
instance, a map app may see higher traffic on weekends as opposed 
to weekdays. T-tests are also the go-to for any experiments where the 
object is to study long-term metrics. 

Bonferroni correction
Simple, single-hypothesis tests can yield valuable insights, but 
multiple-hypothesis tests are often even more useful and certainly 
more efficient. There is one downside: they can introduce errors into 
your statistical significance calculations via the multiple comparisons 

problem (also known as multiplicity or the look-elsewhere effect). The 
probability of making an error (by basing a critical business decision on 
a false positive result) increases rapidly with the number of hypothesis 
tests you are running.

Fortunately, there are statistical tools used to compensate and correct 
for the multiple comparisons problem. Amplitude uses the Bonferroni 
correction to accomplish this.

The Bonferroni correction is the simplest statistical method for 
counteracting the multiple comparisons problem. (It’s also one of the 
more conservative methods and carries a greater risk of false negatives 
than other techniques.) Mathematically, the Bonferroni correction 
works by dividing the false positive rate by the number of hypothesis 
tests you are running; this is equivalent to multiplying the p-value by 
the number of hypothesis tests.

https://help.amplitude.com/hc/en-us/articles/4403176829709-How-Amplitude-Experiment-uses-sequential-testing-for-statistical-inference
https://arxiv.org/pdf/1512.04922.pdf
https://help.amplitude.com/hc/en-us/articles/12587885686299-Analyze-your-experiment-data-with-the-T-test
https://help.amplitude.com/hc/en-us/articles/12587885686299-Analyze-your-experiment-data-with-the-T-test
https://en.wikipedia.org/wiki/Multiple_comparisons_problem
https://en.wikipedia.org/wiki/Multiple_comparisons_problem
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Amplitude Experiment performs Bonferroni corrections on both the 
number of treatments and the number of metrics in each of the two 
metric tiers (primary and secondary). In other words, Bonferroni is only 
applied to the primary metric when there are multiple treatments (i.e., 
more than two). Bonferroni is applied to the secondary metric if there 
are multiple secondary metrics or multiple treatments. 

How? CUPED first identifies a baseline characteristic (also known as a 
covariate) that may be related to the treatment effect. This covariate 
is then used to match individuals in the treatment and control groups 
based on their propensity score, which is the predicted probability of 
performing the conversion event based on the covariate.

By matching individuals with similar propensity scores, CUPED corrects 
for differences in users’ likelihood to convert that stem from factors 
other than the product change being tested, which reduces the bias 
in the estimated treatment effect. This is important because some 
subgroups are more likely to respond to the treatment than others, and 
these subgroups may not be equally distributed among treatment and 
control groups.

There are some cases where CUPED is not necessary or will not reduce 
variance within your tests. This is true if you are only targeting new 
users in your test or the event was not instrumented in Amplitude 
Analytics during the pre-period. In general, anonymous users can be 
problematic for CUPED, but with Amplitude’s differentiated approach 
to seamlessly managing user identity, this is not a problem for Amplitude 
Experiment customers.

Look for an info icon in the significance column when 
Bonferroni correction is applied. The tooltip shows the 
corrected and uncorrected p-value.

Toggle on CUPED within your statistical settings under 
the Analyze tab in Amplitude Experiment. This is also 
available within Experiment Results.

CUPED
In traditional A/B testing, the average treatment effect is estimated 
by comparing the average outcomes of a treatment group to a control 
group. However, this method assumes that the treatment effect is the 
same for all individuals, which is not always true.

To address this limitation, Amplitude Experiment uses the statistical 
technique Controlled-experiment Using Pre-Existing Data (also known 
as CUPED), which estimates the treatment effect separately for each 
individual and then aggregates the individual estimates to obtain an 
overall estimate of the treatment effect. This ensures CUPED helps you 
reduce variance in your tests and achieve statistical significance faster.

https://help.amplitude.com/hc/en-us/articles/115003135607
https://amplitude.com/blog/ab-testing
https://exp-platform.com/Documents/2013-02-CUPED-ImprovingSensitivityOfControlledExperiments.pdf
https://help.amplitude.com/hc/en-us/articles/13448368364187-Modify-your-experiment-results-with-statistical-settings#cuped
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Targeting and assignment
Ensuring the right users are exposed to the right variant is essential to 
the integrity of your experiments—and your results. That’s why we’ve 
built Amplitude Experiment with a variety of tools and capabilities 
designed to do just that.

Exposure

One of the most important concepts to understand is exposure events. 

An exposure event is a strictly defined analytics event sent to Amplitude 

to inform Amplitude Experiment that a user was shown a variant of an 

experiment or feature flag. Exposure events contain the flag key and the 

variant of the flag or experiment that the user has been exposed to in the 

event properties.

When Amplitude ingests an exposure event, it uses the flag key and variant 

to set or unset user properties on the user associated with the event. 

Setting user properties is essential for experiment analysis queries on 

primary and secondary success metrics.

Sticky bucketing

Teams also need to ensure that users have a consistent experience 

regardless of what devices they use. Sticky bucketing helps ensure that a 

user will continue to see the same variant if your experiment’s targeting 

criteria, percentage rollout, or rollout weights are changed. Amplitude 

Experiment uses consistent bucketing, which keeps users bucketed 

into their original variants as long as you don’t change anything. (Note: 

Amplitude Experiment uses a deterministic hashing algorithm, not a 

random hashing algorithm.)

When sticky bucketing is on, Amplitude Experiment will not evaluate 
users based on targeting conditions or allocation percent. Instead, they 
will continue to see the last variant they saw. (See the evaluation flow 
chart to learn more about the order in which evaluation happens.)

Sticky bucketing is often used as a defense mechanism against variant 

jumping. However, simply enabling sticky bucketing does not guarantee 
you’ll never see variant jumping. It may still occur if your experiment 
includes both a logged-out and a logged-in experience. When the user 
is logged out, they may have a different Amplitude ID than when they 
are logged in.

To turn sticky bucketing on or off, navigate to the 
Configure tab and look for the sticky bucketing toggle 
under Advanced Settings.

https://www.docs.developers.amplitude.com/experiment/general/exposure-tracking/#exposure-event
https://www.docs.developers.amplitude.com/experiment/general/data-model/#flags-and-experiments
https://help.amplitude.com/hc/en-us/articles/12939879862171-Sticky-bucketing-in-Amplitude-Experiment
https://www.docs.developers.amplitude.com/experiment/general/evaluation/implementation/#consistent-bucketing
https://www.docs.developers.amplitude.com/experiment/general/evaluation/implementation/
https://www.docs.developers.amplitude.com/experiment/general/evaluation/implementation/
https://www.docs.developers.amplitude.com/experiment/guides/troubleshooting/variant-jumping/
https://www.docs.developers.amplitude.com/experiment/guides/troubleshooting/variant-jumping/


65Build with Confidence: Your Guide to Scaling Product-Led Experimentation

When should you enable sticky bucketing?

•	� You want to give the user a consistent experience, even if the user 
property you’re targeting changes. For example, if you’re running 
an experiment only in the United States, enabling sticky bucketing 
would ensure your users would see the same variant if they 
happened to travel outside the country.

•	� You want to decrease the percentage of users in an experiment 
where the treatment group is not performing well. But you don’t 
want users to be moved from either the treatment or the control to 
the group that never saw either variant. Enabling sticky bucketing 
will keep users in their assigned groups even after you change the 
percentage rollout.

•	� You want to target users for a specified duration and then stop 
targeting new users while maintaining the original assignments for 
any users that have already been bucketed. Enable sticky bucketing 
at the beginning of the experiment with a 50/50 split. Then, after the 
duration passes, change the rollout percentage to zero.

•	� You want to sunset a failed experiment but ensure the users 
bucketed into an experience still get that experience. Enable sticky 
bucketing and set the rollout percentages to zero.

Do not enable sticky bucketing when:

•	� You want the user’s experience to change as the targeted user 
property changes. To continue an example from the previous list, if 
you‘re running an experiment in the United States, you may not want 
users to have the same experience if they’re traveling abroad. There 
may be legal reasons you cannot enable certain features of your app 
in certain countries, or there may be localization issues that affect 
how your app’s UI displays.

•	� Your experiment is intended to drive free users to become paid users 
and relies on earning rewards. Once these users convert, you no 
longer need to offer a reward. If sticky bucketing were enabled here, 
those users would receive the free experience even after upgrading 
to paid.

•	� You want to enforce a “cool down” period between giving discounts. 
If you want to limit the frequency of discounts for each user to once 
every seven days, you can add a seven-day filter to the targeting 
criteria; if a user received a discount within that period, the flag 
would evaluate to [off]. With sticky bucketing enabled, this would 
not happen, and the user would collect another discount before you 
wanted them to.

•	� You are rolling out or rolling back a variant. When sticky bucketing is 
enabled and you change the traffic allocation, you’ll get a weighted 
average between the old and new allocation (since the users who 
were previously bucketed will stay in their bucket). It will take some 
time for your experiment to achieve the desired allocation.

Sticky bucketing helps ensure that a user 
will continue to see the same variant if your 
experiment’s targeting criteria, percentage 
rollout, or rollout weights are changed.
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This is not intended to be an exhaustive list. There are also cases 
where the results would be the same, regardless of whether sticky 
bucketing was on or off. An example might be an experiment where 
you’re targeting everyone who views your home page, and you do not 
touch any of the experiment controls while the experiment is running. 

Bucket on group IDs 
Experiment Analysis supports different units of analysis. Previously, 
the default unit was “user.” Now we also support various group types 
like org ID, account ID, etc. This level of flexibility is beneficial for B2B 
organizations who want to deliver tests to specific accounts, such 
as beta customers, or perhaps restrict high-value customers from 
receiving any experiments at all. 

Holdout groups
Teams need a variety of ways to manage running multiple tests at a 
time. Using holdout groups is one way to achieve this. To measure  
the long-term and combined impact of multiple experiments, it 
is useful to withhold a portion of users from any experiment. This 
approach yields a more comprehensive understanding of the effects, 
as statistical significance in a single experiment may not reflect the 
overall impact. Amplitude Experiment makes it easy to exclude a group 
of users from your experiments by creating a holdout group. This will 
withhold a portion of the overall traffic from seeing any experiment 
within the group.

We recommend adding experiments to a holdout group for the following 
use cases:

•	 Measuring the long-term impact of your rolled out variants

•	 Measuring the lift of your team’s product changes as a whole

Best practices

The following are some best practices to keep in mind when using holdout 
groups:

•	� Set the holdout percentage to a value between 1-10%.

	 - �It is recommended to have a large amount of traffic to begin with, 
otherwise withholding a significant portion of your total traffic will lead 
to extended experiment time frames.

•	� Don’t add a running experiment to a holdout group. This may severely 
compromise the integrity of your data because it may unassign users 
from the active experiments being added.

	 -	� We recommend adding experiments to a holdout group before they 
have started running.

•	� Don’t remove a running experiment from a holdout group. This may 
compromise the integrity of your data because it may assign users to the 
active experiments being removed. 

	 - �Deleting a holdout group with running experiments has the same 
consequences. Delete the holdout group after all experiments in the 
group have concluded.
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Mutual exclusion groups
Another way for teams to manage running 
multiple tests at a time is to use Mutual Exclusion 

Groups. Mutual exclusion groups help ensure 
users included in one experiment are not 
exposed to any related experiments (or colliding 
tests) at the same time. This is crucial to avoid 
interaction effects or conflicting results that 
may arise from running multiple experiments 
simultaneously to solve the same problem.

With Amplitude Experiment, you can set two 
or more experiments to be mutually exclusive. 
Simply add both experiments to the same 
exclusion group. Amplitude Experiment will take 
care of the rest.

We recommend mutually exclusive experiments 
for the following situations:

•	  �When simultaneous experiments occur in  
the same area of your product and have the 
same goal.

•	  �When simultaneous experiments occur in the 
same funnel and have the same goal.

Alternatively, you could run these experiments 
one after the other instead of simultaneously.

Mutual exclusion groups help 
ensure users included in one 
experiment are not exposed to any 
related experiments (or colliding 
tests) at the same time.

https://help.amplitude.com/hc/en-us/articles/360061270712-Set-up-and-run-mutually-exclusive-experiments
https://help.amplitude.com/hc/en-us/articles/360061270712-Set-up-and-run-mutually-exclusive-experiments
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Best practices

The following are some best practices to keep in mind when using 
mutual exclusion groups:

•	� Evenly distribute traffic between your slots.

•	� Don’t add a running experiment to a mutual exclusion group. This 
may severely compromise the integrity of your data because it may 
unassign users from the active experiments being added.

	 - �We recommend adding experiments to a mutual exclusion group 
before they have started running.

•	� Don’t remove a running experiment from a mutual exclusion group. 
This may compromise the integrity of your data because it exposes 
your users to the other experiments in the group. 

	 - �In addition, deleting a mutual exclusion group with running 
experiments has the same consequences. We recommend deleting 
the mutual exclusion group after all experiments in the group  
have concluded.

Sample Size Calculator
Calculating the right sample size—the number of participants needed 
for an experiment—is another important step toward accurate results. 

Amplitude’s sample size calculator helps you determine how much 
traffic each variant needs to reach statistical significance for a given 
metric. Once you have this number, you can divide it by the average 
traffic per day or week for the segments you plan on targeting to 
estimate how long the experiment will likely take. (While Amplitude 

Experiment supports sequential testing, the sample size calculator 
solely supports determining the sample size for T-tests.) 

If you find that the sample size returned by the calculator is larger 
than you’d like, resulting in an experiment that would take too long to 
execute, there are a few steps you can take:

Increase the minimum detectable effect (or MDE). The lower the MDE, 
the more difficult it is to measure precisely, meaning you’ll need a 
larger sample size. To understand what you should use as a MDE, it’s 
helpful to think about the ROI of an initiative and what magnitude 
of increase in your primary metric is needed to justify the cost of 
implementing and maintaining the change.

Decrease the confidence level. Generally, 95% is accepted as the 
industry standard. However, values as low as 80% can help generate 
directional insights.

Experiment duration estimation

The experiment duration estimate is designed to predict the length 
of time your experiment will run. It can only be used with the primary 
metric but works for both sequential testing and T-tests. Amplitude 
Experiment uses the means, variances, and exposures of your control 
and variants to forecast expected behavior and calculate how many 
days your experiment will take to reach statistical significance. As 
Amplitude Experiment receives more data over time, this prediction 
will improve. However, if any of these inputs change significantly during 
the experiment, the accuracy of the prediction will likely decrease.

https://help.amplitude.com/hc/en-us/articles/11502996649371-Plan-experiments-with-help-from-the-sample-size-calculator
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Data quality guardrails
There are few more important rules of data analysis than Twyman’s  
law, which is premised on the principle that the more unusual or 
unexpected the data, the more likely they are to be the result of an  
error in data measurement or analysis. You could apply the same tenet  
to experiment results. In other words, if a result looks too good  
(or striking) to be true, it probably is. 

That’s why Amplitude Experiment comes with built-in guardrails  
to ensure the quality of your testing data. These automated checks 
appear in a consolidated list in the Analyze tab, alerting you of any 
data issues that can lead to skewed or confusing results. They also 
show common pitfalls to watch out for in setting up and implementing 
experiments—and guidance for overcoming them. 

Automatic checks include: 

•	� Consistent number and definition of variants

•	� Consistent allocation between treatment and control variants

•	� If a test has sample ratio mismatches 

•	� If a test has exposure events without assignment events

•	� If variant jumping is occurring at a high frequency

•	� Traffic decreases over time

•	� If there are suspiciously large uplifts and aberrations in event data

•	� If there are abnormal variance, standard error, or confidence intervals

•	� Exposures without assignments

Exposures without assignments 

The Exposures without Assignments chart (in the Monitor tab) queries 
for the cumulative number of unique users who have performed an 
exposure event without a corresponding assignment event within each 
day. If you see a large number or percentage of users in the chart, be 
careful when interpreting the results of your experiment. Investigate 
what happens if a user inadvertently gets exposed to the experiment. 
Was the experience bad? Can the user even see the experience? What 
does it mean if a user sees more than one experiment when they’re 
mutually exclusive? Exposure without assignment may also affect 
future experiments, so you should investigate and fix the issue.

https://www.docs.developers.amplitude.com/experiment/guides/troubleshooting/exposures-without-assignments/


70Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Sample ratio mismatch

Amplitude Experiment also checks for sample ratio mismatch (SRM) 
issues. (To view any issues detected, click on Implementation & 
Instrumentation in the Analyze tab of the data quality guide). An SRM 
occurs when the observed allocation for variants significantly differs 
from the specified allocation. For example, imagine you’ve set your 
experiment’s traffic allocation to be split equally between the control 
and treatment variants, but instead, the control receives 55% of the 
experiment’s traffic. SRMs point to biases in the data and can lead to 
unexpected or inaccurate results if unresolved. Generally, you should 
be wary of the results of any experiment affected by a SRM. The 
cumulative assignment or exposure charts can help you track down the 
cause of an SRM. Look for timestamps where the control and treatment 
time series diverge; often, you’ll find the cause there.

Variant jumping

In some cases, SRMs are caused by variant jumping. This is 
when the same user sees two or more variants for a single flag or 
experiment, which sometimes occurs with authentication patterns 
that make it difficult to know if a user has already been assigned a 
variant. Examples include applications with short-lived sessions and 
applications with large numbers of anonymous users.

Variant jumping may occur normally or abnormally, for various reasons, 
but variant jumping above a certain threshold may be cause for concern 
when it comes to an accurate analysis. Amplitude Experiment helps 
you debug variant jumping by flagging users who have jumped variants 

so you can analyze their timelines. If you’re using remote evaluation, 
you should check the assignment event to identify assignment vs. 
exposure discrepancies.

A rigorous approach to experimentation

When it comes to experimentation in your digital product, testing 
methodology is essential. A platform informed by best practices 
for experimentation and statistics can ensure you’re doing it right. 
Amplitude’s end-to-end platform was designed for the most reliable 
results, while providing a seamless, consistent experience for your 
customers. 

SRMs point to biases in the data 
and can lead to unexpected or 
inaccurate results if unresolved.

https://www.docs.developers.amplitude.com/experiment/guides/troubleshooting/sample-ratio-mismatch/
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Cultivating a culture of experimentation 
is the first step to building a product-led 
experimentation  program—creating and 
executing a strategic experimentation system 
is the next. Learn more by applying for the 
Reforge Experimentation + Testing program. 

Using the best practices throughout this guide will set your 
experimentation program up for long-term scale and success. 
Your product and engineering teams will be able to confidently 
make product bets and release new features with measurable 
impact every time you ship. And your entire organization will 
benefit from data-driven decisions that move the needle on 
business goals. 

Whether you’re starting from scratch or scaling an existing 
program, Amplitude Experiment will take you to the next level. 
With built-in identity resolution, feature management, and 
statistical rigor, Experiment will guide you to results you can 
trust. Start building confidently today and request an  

Experiment demo. 

Getting Started with 
Experimentation

https://www.reforge.com/programs/experimentation-testing?utm_source=amplitude&utm_medium=referral&utm_campaign=comarketing&utm_term=&utm_content=experimentation_playbook
https://amplitude.com/amplitude-experiment
https://info.amplitude.com/experiment-demo
https://info.amplitude.com/experiment-demo
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