
1Build with Confidence: Your Guide to Scaling Product-Led Experimentation

2Build with Confidence: Your Guide to Scaling Product-Led Experimentation

In This Playbook

03 29

46

51

61

71

72

04

08

12

17

24

Introduction

Building a Culture of Experimentation

The Importance of Experimentation and
How to Get Started

Experiment Ideation and Roadmap
Development

Product-Led Experimentation for B2B
Organizations

Feature Management and Experimentation:
Two Sides of the Same Coin

Critical Capabilities for Product
and Engineering Teams to Scale
Experimentation Programs

Build vs. Buy: A Guide to Selecting Your
Experimentation Platform

How Amplitude Experiment Guides You to
Scale Experimentation

How Experimentation Works in Amplitude

Getting Started with Experimentation

Contributors

3Build with Confidence: Your Guide to Scaling Product-Led Experimentation

In today’s competitive landscape, product-led experimentation is more than a good idea—it’s a necessity
for product and engineering teams to quantify their impact. But they need to cultivate a culture of
experimentation and infuse it into every phase of the product development process to build with confidence.

Built by experts and co-authored by Reforge, this guide is designed to help product and engineering teams establish product-led experimentation
programs successfully. Throughout this guide, our experts will walk you through how to build an experimentation culture, understand the practice of
experimentation, prioritize your experimentation roadmap, and more.

Whether your goal is to make smarter decisions, maximize business impact, or drive rapid innovation, product-led experimentation can help. This guide
will help you scale product-led experimentation to unleash the power of your products.

INTRODUCTION

https://www.reforge.com/programs/experimentation-testing?utm_source=amplitude&utm_medium=referral&utm_campaign=comarketing&utm_term=&utm_content=experimentation_playbook

4Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Launch day for a new, major feature is always exciting. Bringing a
squad together, creating something new, and getting it into the first
customers’ hands: it’s product management at its best.

It’s also only half the battle.

How do we know if we did the job? If we’re successful? Many companies
are happy when new deployments ship: presentation decks are updated,
tasks are marked as completed, and teams are acknowledged in an all-
hands meeting. But the process is far from complete when a new feature
or product ships. In fact, shipping could be seen as a midpoint of your
project. The best product teams know that what truly matters is not just
shipping those outputs, but rather what outcomes they drive.

To identify and understand those outcomes, we need to be able to
measure the effect of the changes we make to our product. To do
this, teams must develop hypotheses, run experiments, evaluate
results, and ultimately use those results to inform future strategy and
decision-making.

Despite the quest for outcomes, the goal is not to ship more to
maximize outputs. Instead, as product managers, we aim to maximize
outcomes and minimize the outputs it takes to get there.

This is all a part of a culture of experimentation.

In this chapter, we’ll explore what “culture of experimentation” means,
how to cultivate it within your organization, and what success looks like
as you build it.

What does a culture of experimentation mean?
In today’s competitive business environment, a culture of
experimentation is not optional for product teams. The work
teams do must align with both user and business value. A culture
of experimentation helps you to de-risk projects and deliver value
by breaking down huge organizational goals into smaller, testable
hypotheses that a squad can own. Organizations that ignore this
approach will find themselves going down costly dead ends and
falling behind.

The best product teams know
that what truly matters is not just
shipping those outputs, but rather
what outcomes they drive.

Building a Culture of
Experimentation

By Saleem Malkana,
Reforge

5Build with Confidence: Your Guide to Scaling Product-Led Experimentation

A culture of experimentation must permeate every level of an
organization, with a particular focus at the squad level. Squads are the
atomic unit team that solves a customer problem, usually: product,
design, and development. Some squads benefit from additional
partners like research, marketing, and others. This grassroots approach
fosters autonomy: empowering teams to generate hypotheses, design
experiments, and learn from their outcomes.

As experimentation spreads to other squads, apply lessons learned
to new teams and unify the culture across the org. It's critical to
have an experimentation strategy here, and to avoid a scattershot
approach of running a thousand small A/B tests whose learnings
do not compound. A culture of experimenting at the team level
creates a powerful foundation for agility and adaptability. This allows
companies to conquer challenges and seize opportunities in an
ever-changing landscape.

Why the continual mention of culture? People may think: "Teams
need to experiment. Platforms such as Amplitude Experiment support
that need." It is a powerful product, but it's only part of the solution
because culture is not purely technical. Ultimately, culture is a product
of people, integrated processes and communication, and technology.
Let's explore these three elements in more detail:

•	� People. It starts with resourcing an empowered squad. Across
the squad, members should be data-driven and empowered to
own and solve the most important problems facing customers and
our business.

•	� Integrated processes & communication. Experimentation must be
integrated into the product development process from the outset,
with healthy communication across teams. Hypotheses, test design,
success metrics, and implementation must be considered early—not
in the final stages of a launch and certainly not ad hoc after launch.
Open communication to celebrate wins and losses, share customer
insights, discuss ideas, and plan for the future fosters a strong
culture of experimentation.

• 	 �Technology. Complement the right people and processes with
a robust platform that enables the best work to be done. The
technology you use should not only measure product analytics but
also include a framework for A/B testing.

Building a culture of experimentation
We have an understanding of the foundational components of
strong experimentation culture—people, process, technology, and
communication—however, we would be remiss not to mention other
essentials as you work to build a culture of experimentation at your
organization.

•	� Secure an executive champion. An executive champion should help
generate momentum, support risk-taking, and encourage learning
from failures.

6Build with Confidence: Your Guide to Scaling Product-Led Experimentation

A culture of experimentation is
not solely a technical problem
to solve. Culture is a product of
people, integrated processes and
communication, and technology.

•	� Be early and rigorous in your hypothesis
design. Experimentation shouldn’t be an
afterthought. Define hypotheses and success
metrics when a project starts; don’t try to figure
these out as you launch.

•	� Embrace failure. To truly build a culture of
experimentation, organizations must embrace
failure as a mechanism to learn. If you never
fail, you probably are not pushing hard enough
on new ideas.

•	� Break grand challenges into smaller testable
hypotheses. Embracing failure works when
individual components of a feature are tested
and invalidated versus the feature itself. Don’t
ship a whole product and see how it goes.
Instead, de-risk the development of large
features by testing smaller components. This
allows you to figure out which components
are validated by customer data and determine
how to iterate. After all, the faster you drive
the feedback loop of shipping to customers,
measuring, and iterating, the faster you succeed.

•	� Establish one center of excellence.
Start small and focused with one team to
validate the basic experimentation stack and
build from there.

7Build with Confidence: Your Guide to Scaling Product-Led Experimentation

•	� Cultivate curiosity. As previously mentioned, the goal is to maximize
outcomes and minimize the outputs it takes to get there. To build a
culture of experimentation, you must get management addicted to
outcomes. Start with projects your team has already shipped. This
should be easier to measure, exposes gaps in measurement ability,
and kickstarts the mindset that shipping means we get outcomes.

•	� Build a high-trust experimentation system, even if only measuring
simple metrics. Waiting to measure long-term results can negatively
hurt momentum. Establish proxy metrics that help shorten the
lifecycle of the experiment. Make sure your proxies are upstream
and can inform whether you’re going in the right direction or not.

All of these elements are important to building a sustainable culture
of experimentation, but I want to dive a little deeper into the role
executives play in enabling a culture of experimentation.

Executive support is important for building a culture of experimentation
because it helps generate momentum and encourages risk-taking and
learning from failures. Other ways executives champion your budding
experimentation culture include:

•	� Providing resources, such as time, budget, and tools, to support
experimentation and empower teams to take action.

•	� Celebrating and recognizing successes and failures, as both provide
valuable learning opportunities and help build a culture of continuous
improvement.

•	� Creating channels for open communication and collaboration across
teams and departments to facilitate sharing of knowledge, insights,
and best practices.

One thing championing executives don’t do is request laundry lists
of features to ship without connection to strategy or goals. Doing
so reduces product empowerment, squashes any bandwidth for
experimentation, and hurts teams in the long run.

Cultural barriers to experimentation
At Reforge, we care so much about experimentation that we
built an entire program around creating and executing a strategic
experimentation system for breakthrough ideas. The program starts
with experts Elena Verna and Fareed Mosavat breaking down cultural
barriers to experimentation. Apply to Reforge for access.

Executive support is important for building a
culture of experimentation because it helps
generate momentum and encourages risk-
taking and learning from failures.

https://www.reforge.com/programs/experimentation-testing?utm_source=amplitude&utm_medium=referral&utm_campaign=comarketing&utm_term=&utm_content=experimentation_playbook

8Build with Confidence: Your Guide to Scaling Product-Led Experimentation

As businesses move from output-based to outcome-based
approaches, product leaders—and their investments—are facing
greater scrutiny. I saw this growing trend firsthand in my work
heading analytics and experimentation for startups such as MOO,
PhotoBox, and Hopin. In fact, it’s why I founded my product
measurement consultancy CAUSL.

This shift in accountability has led to something of a heyday for
experimentation. There’s a good reason for that.

Experimentation—specifically, A/B testing—is the gold standard
when it comes to making decisions about iterating on features or
products, or launching entirely new ones. It also makes it possible
to quickly assess the impact of those product decisions before
committing to them. And that’s important because launching
features and products is expensive: the total cost goes beyond
deployment to include research, design, engineering, data and
analytics, and more. In other words, it’s a way for businesses to
“de-risk” their investments.

The Importance of
Experimentation and How
to Get Started

By Bhavik Patel
CAUSL

Experimentation—specifically, A/B

testing—is the gold standard when

it comes to making decisions about

iterating on features or products, or

launching entirely new ones.

9Build with Confidence: Your Guide to Scaling Product-Led Experimentation

But there’s another reason product teams are turning to
experimentation. While measuring the ROI for something like
marketing is relatively straightforward, that’s typically not the case
with product. After all, product investments are measured by things
like headcount and engineering hours. And while product teams hope
they can tie spend to company goals like revenue growth, customer
growth, or conversion rates, there are only a few ways to do that.
Experimentation is one of them.

The importance of good experimentation
design
Experimentation is important—but it’s only useful if it’s done right.
What does that mean? Well-designed experiments are rooted in the
scientific method and can be broken down into the following phases
and steps:

Planning (pre-experiment)

•	� Document the reasons for running the experiment.

•	� Conduct research to validate your observations. This research can be
quantitative, qualitative, competitive insights, and more.

•	� Build a hypothesis with clearly defined product metrics or KPIs.

•	� Create alignment on next steps based on each possible outcome:
whether each variant wins, or if the test does not reach statistical
significance.

•	� Other key considerations include the test duration, audience if it is a
targeted experiment, traffic split, critical threshold, and more

•	� Clearly articulate what is being tested and modified. This could be a
design change, a new feature or experience, and more.

•	� Confirm that the experiment can be measured using analytics tools.

During the experiment

•	� Create analytics dashboards for ongoing monitoring.

Post-experiment

•	� Analyze the results.

•	� Articulate the outcome of the experiment and move forward with the
predetermined next steps.

Building vs. buying an experimentation
platform
Of course, any discussion on how to run experiments inevitably leads
to the question of where to run them. In other words, is it best to
build an experimentation platform or buy one? My answer is always a
resounding “buy.” In my view, experimentation is a commodity. Most
companies wouldn’t build a CRM platform, so why should they build
one for experimentation?

Experimentation platforms are the product of numerous statisticians
and engineers who have ensured the platform meets statistical
requirements on elements such as randomization and statistical
engines. They also come with user-friendly interfaces making the
platform accessible to different team members. Building something

10Build with Confidence: Your Guide to Scaling Product-Led Experimentation

similar would require two or three years, plus ongoing maintenance—
and even then, it might result in running experiments with built-in
biases that lead to product teams making poor decisions.

Measuring A/B testing success
Like any good program of work, A/B testing demands its own method
for assessing success. In my view, this comes down to: velocity,
process, and win rates.

Velocity

Companies just starting with experimentation should look at the
number of tests run, quarter over quarter, year over year. Numbers
aren’t everything, but they can serve as a good indicator of whether a
team or company has built a culture of experimentation.

Process

As the experimentation program evolves, the focus should shift to
the quality of experiments and the process they follow to go live.
That means ensuring the process adheres to scientific methods—in
particular, grounding hypotheses in evidence-based research, whether
through quantitative data or qualitative data such as customer
feedback or service tickets. It also means that there is an optimized
and documented flow in which an experiment can go from an idea
into production that accounts for prioritization, development time,
experiment length, and expected impact.

Win rates

Ultimately, every team running experiments will also want to evaluate
its win rate. While it’s natural for that number to fluctuate at the outset
of an experimentation program, it should stabilize over time. As a rule,
experimentation programs should seek an approximate win rate of at
least 1 in 5. If your win rate is lower, you may have a problem at the
hypothesis and research stage. But it’s not quite that simple. While
those wins represent value, the losses are worth something, too. They
are the bad decisions that were rolled back, ensuring the risks—and
costs—were averted. Even tests without a clear winner can help save
on product costs and feature bloat.

Experimentation milestones

As experimentation programs mature, there are a number of other
milestones to keep in mind, including growth in the number of teams
running experiments. After all, experimentation is something to
democratize—it shouldn’t belong to one team. The entire organization
should embrace testing.

As a rule, experimentation programs
should seek an approximate win rate
of at least 1 in 5.

11Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Reliable tooling is another important goal post. If teams can’t trust
their instrumentation and tooling, they will inherently distrust their
results and question the experiment’s validity. Ensuring your teams
have a reliable stack is essential to build trust across your organization.

Another key milestone is buy-in at all levels of an organization,
including the top. In the same way that reliable instrumentation builds
trust in testing, a business-wide culture of experimentation means
stakeholders are a lot more likely to align on outcomes—freeing them
to focus on what to do next.

Best practices for launching an
experimentation program
Newcomers to experimentation should start by building their
testing muscle memory by establishing a regular cadence for
experiments. There’s no need to get overly academic at first. After all,
experimentation itself is trial and error, and that’s what makes it such a
beautiful concept to adopt. It’s about finding what works, not nailing it
out of the gate.

To do that, it makes sense to start with low-risk tests. I wouldn’t advise
starting with a complex pricing experiment, for example, but it’s a
great goal to work toward. Another pitfall to avoid: getting hung up
on arbitrary—and quite often unrealistic—numbers. Companies often
assume they should be running thousands of experiments because
they compare themselves to Amazon or Netflix, but reaching that

scale requires an enormous amount of traffic and resources. For most
companies, the goal shouldn’t be running thousands of experiments;
the goal should be running more than they did last quarter or year.

Experimentation shouldn't belong
shouldn’t belong to one team.
The entire organization should
embrace testing.

Make better product decisions
These are just a few of the easy ways to get started on an
experimentation program, and there is little reason to wait. A well-
designed, science-backed experimentation program is one of the most
powerful tools available for making smarter product decisions—from
when and what to launch to measuring the ROI. And with product
teams under ever greater pressure to spend wisely, that’s more
important than ever.

12Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Process matters when it comes to
experimentation. And that goes for
experimentation ideation, too.

Knowing what and where to test is mission-critical to both
the experiment and the experimentation program. Ad hoc
or misguided testing can shake an organization’s faith in the
entire program, which leads to bad decision-making and
undermines data-driven cultures.

To truly understand every element of a platform or product
and how they ladder up to an organization’s business goals, I
like to create a “metric tree.” Metric trees chart how various
metrics from features and products relate to one another
and the business’ growth levers. After all, those are the
same levers you want your experiments to optimize. Aside
from helping you understand how your business makes
money, metric trees can help compartmentalize experiments
and give you an idea of where to focus your efforts.

Credit: @DodoNerd

Experiment Ideation and
Roadmap Development

By Bhavik Patel
CAUSL

Profit

EBITDA

Business Concepts/Levers

Metrics

Revenue

APR

Active Account
Holders

Account Volume

Monetisation

ACV

ACV

Acquisition Set Up Activation Habit

North Star Metric

Quarterly Active Organiser

Retained Churn

First Event
Published Rate

Event per
Organiser

Active
Organiser Rate CESNew Customer

Sign Up
Account Setup

Attendance
Rate

Atendee
Engagement Rate NPS

Contacts
per Event

Create First
Event

Upsell Downsell

13Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Sun Diagrams are another useful tool for ideation. In this diagram, the
sun takes the form of a goal, and the sun’s rays are workstreams. At the
end of each workstream is a team or pod that is organized according to,
for example, the Pirate framework for growth. (For the uninitiated, the
framework focuses on the customer acquisition stages of acquisition,
activation, retention, revenue, and referral.) I like to divide the diagram
into three columns to sub-categorize the workstreams by experiment
type: “brilliant basics,” “enhanced experiences,” and “magic moments.”

Brilliant basics cover experiments to meet customer expectations, such
as signups and onboarding flows. Enhanced experiences refer to intuitive
experiences like search experiences and wish lists that allow customers
to discover and use the core product. And finally, magic moments are the
kind of experiences and innovations, like recommendation engines, that
differentiate the product and delight customers.

Brilliant Basics

Work Stream 1

Goal

Work Stream 2

Work Stream 3 Work Stream 4

Enhanced Experiences Magic Moments

Cr
ed

it:
 @

Do
do

N
er

d

https://www.linkedin.com/posts/dodonerd_sun-charts-a-framework-for-experimentation-activity-7008377743780233216-X_QV/

14Build with Confidence: Your Guide to Scaling Product-Led Experimentation

How to validate experimentation concepts
Experimentation can be a big cost-saver; every “failed” experiment
represents features and products you shouldn’t have launched. But
experimentation is still an investment, potentially requiring significant
engineering hours. This is why it’s helpful to have a method for
determining which experiments are worth pursuing and which are
not. Fortunately, there are a number of techniques to help guide your
experimentation roadmap.

Painted door test

As its name suggests, a painted or fake door test offers a button
or link to gauge customer interest in a new feature or product. Of
course, when customers click on those features, they discover that
feature isn’t available, often finding a form to “learn more.” This can
lead to unintended consequences such as disappointing and, in rare
circumstances, even alienating users. But it does provide great data
and insight for further investigation.

Sign-ups

Another easy way to measure interest is to ask customers to sign up to
stay informed about whatever feature you’re building. You can do this
through your website or social media accounts.

Desk research

Desk research involves looking into whether other companies have
published studies about tests they have done on the same sort of
feature you’re creating. This can save you time by learning from the

experiences of teams at other organizations and help you understand
what uplift they were able to generate based on their learning.

Similar experiments

Looking at previous experiments of the same size and product area can
serve as a useful guide or proxy when it comes to assessing potential
uplift, adoption, or usage.

Leap of faith

Sometimes, the only way to validate an experiment is to take a leap
of faith and push forward with it. After all, validating experiments
requires experimenting. Remember that A/B testing is a great tool for
decision-making, but it shouldn’t hinder your ability to make a decision.
Sometimes, you just have to roll the dice.

When not to run an A/B test
In some situations, A/B testing may not be appropriate or even
possible. Pricing is a prime example of an area where experimentation
may be ethically untenable. It can also cause customers to complain—
potentially very publicly—that they are being charged more for the
same goods or services than other customers.

Fortunately, there are alternatives for these scenarios, with analytics
playing a key role in each approach. Taking the pricing example again,
one option is a geographic-based study of customers in two similar
markets. Observing the effect higher pricing has in one market can
indicate the impact of higher prices across the board. Estimating the
causal impact using regression modeling is another useful approach—it

15Build with Confidence: Your Guide to Scaling Product-Led Experimentation

looks at how an input affects a particular metric and how a change in
that input affects the metric. Pre-post analysis also avoids classical
testing by comparing data gathered before and after a change.

Some teams may even roll out an experience or feature without
running a test. Of course, if it “flops,” you can always roll back the
experience, but keep in mind that by not experimenting, you won’t
be able to say with confidence that the downturn of your metric was
due to the feature or some other external factor. The same is true
for the opposite scenario. This practice may be especially tempting
when your team is confident about the expected outcome. But even
if your intuition is correct, you’ll miss key data around the magnitude
of the impact, which is critical to demonstrating the impact of
experimentation.

There’s something else to consider with this practice. Rolling
out features without testing in the early days of a startup makes
sense, but after a certain point, if every feature is released without
validation, you’re setting a dangerous precedent that output is
preferred over outcome. In my opinion, this leads to feature bloat.
Experimentation is a healthy way to balance intuition-based
decisions and evidence-based decisions.

How to prioritize experiments
Popular tools such as the RICE scoring model are very effective for
determining where experiments belong on a team’s roadmap. The RICE
scoring model measures initiatives according to their reach, impact,
confidence, and effort.

RICE Scoring Model

RICE
Score

Reach Impact

Effort

Confidence

R I C
E

=
x x

16Build with Confidence: Your Guide to Scaling Product-Led Experimentation

That said, RICE scores are not the only factors to
weigh when prioritizing testing. Most companies
will need to balance them against the availability
of traffic and internal engineering and design
resources. Often it’s a question of whether
to tackle one big test that takes up all the
organization’s bandwidth or taking on a number
of smaller tests. These are the tradeoffs most
businesses have to make, especially if they don’t
have a large volume of traffic. And let’s face it,
that’s most companies.

Build a lasting culture of
experimentation
Choosing the right experiments—and when
it’s better to take another route—may require
some time and effort. But putting in the work of
thoughtfully ideating, validating, and prioritizing
them is well worth it. It will pay off in the form of
an experimentation program embraced by your
entire organization and a strong data-centric
culture.

Rolling out features without testing
in the early days of a startup makes
sense, but after a certain point, if every
feature is released without validation,
you’re setting a dangerous precedent
that output is preferred over outcome.

17Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Product-led growth (PLG) has provided B2B product teams an
opportunity to drive meaningful impact at their organizations, but
it changes how product managers should view their position. As
organizations invest in PLG initiatives, they inevitably put more
accountability on the product to deliver growth outcomes,
including revenue.

This is a fundamentally new motion for B2B product teams since
growth has primarily been driven by sales and marketing, not product.
In sales-led motions, product teams are measured on release velocity
and the number of features shipped each quarter. As a result, they
invest in tools and processes focused on speed to delivery rather than
direct impact on business KPIs.

In PLG motions, simply shipping fast creates substantial exposure
to the business, so what happens if you ship the wrong feature or
experience? Key KPIs like user growth, subscription revenue, and
retention can all be negatively impacted.

But if product leaders shift their approach, tooling, and mindset to
tie experimentation to the development process, product teams can
deliver high-impact releases that directly influence revenue as they
continue to adopt PLG.

In PLG motions, simply shipping
fast creates substantial exposure to
the business.

Product-Led
Experimentation for B2B
Organizations

By Elena Verna

The dangers of not experimenting
Consider the implications of continuing to develop your product
without experimentation in a PLG motion. Without a clear, data-driven
approach to product development, all decisions will revert to the
opinion of the HIPPO (also known as the “highest paid person in the
room”) or be based on intuition. This kind of decision-making is not
good for your product or your customers. Even if you stumble into a
positive change, your success will not be repeatable.

Intuitive decisions sometimes work. It makes sense that someone
who knows a product and user base well will be able to instinctively
know what changes to make. However, when your product and market
changes, your intuition expires.

In most products, there’s a perception and reality gap between
what customers need and what you think they want. As your B2B
product grows, that gap also grows. You need to regularly update your
knowledge by gathering data through experimentation.

https://amplitude.com/product-led-growth

18Build with Confidence: Your Guide to Scaling Product-Led Experimentation

There’s more to experimentation than A/B tests
Experimentation doesn’t mean running A/B tests across your whole
product. There are several types of tests product development teams
can run to learn about their users and their product.

Even with A/B tests, you can run a full release or a partial rollout
across a small section of users. You can also run:

•	 �Pilots and beta features: A group of users tries your product or
feature and gives feedback before it’s ready for general release.

•	� Wizard of Oz tests: You create a mock interface you control,
allowing users to try out a product before you build it.

•	� A painted door: Check demand for a feature by creating a fake
button or CTA with a placeholder to say the feature isn’t available
yet and track the number of clicks.

Another option is to ship small changes and analyze the data pre and
post-release.

The experimentation journey
A culture of experimentation doesn’t magically appear overnight. A
single team needs to first learn how to test, how to learn, and how to
win. Once that team has developed an experimentation skillset and
mindset, they should work on democratizing access to testing and
learning. That way, the entire organization can learn how to win with
experimentation.

How to experiment in B2B
Based on my experience, here are the steps for successful
experimentation in B2B organizations.

Prioritize the velocity of learning

The velocity of learning is the North Star Metric of experimentation.
To learn quickly, you need to experiment frequently with tests that
deliver learnings within a short period.

Teams should start by producing a breakdown of their assumptions
about the product. Then, they have to create new development
lifecycle processes focused on data collection about assumptions
rather than full feature availability.

The correct tooling to run tests, data efficacy, and a culture of
forgiveness rather than permission are also essential to a high
learning velocity.

https://amplitude.com/blog/product-north-star-metric

19Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Shift your mindset
Organizations usually start with the wrong mindset: they want to see
clear wins from experimentation. They tend to only treat an experiment
as successful if it brings a lift in a metric they want to improve.

But tests that “fail” because they identify a product variation that
underperforms or doesn’t deliver significant movement are more
valuable than a metric lift. These “failures” are useful because they give
teams a concrete example of what not to do. A shift in your mindset
and definition of experimentation success is critical to driving learning
velocity and promoting healthy accountability within your organization.

Identify where you have enough volume to test
A common problem for B2B organizations is they don’t have enough
traffic, leading to weeks or months before they see test results. But if
you can’t observe meaningful movement in two to three weeks, your
velocity of learning will drastically decelerate.

Imagine that to run a certain test you have to spend eight months on
the experimentation cycle—from ideation to development to testing.
You’ve now spent an enormous amount of time and resources on only
one set of learnings.

Map out your customer journey to identify areas with enough traffic to
test based on the minimum detectable effect (MDE) you want to drive.
If you want to prove a smaller MDE, you need much higher traffic than
trying to validate a larger MDE. While this seems counterintuitive, this

insight is important to help you define what tests you should consider
based on the desired impact on your key metrics.

If you have a product-led growth motion, you will likely find that your
dataset looks similar to B2C companies, with more traffic at the top of
the funnel. Your homepage and landing pages would be ideal high-
traffic places to start running A/B tests.

If you have low-traffic areas you want to test, you can take other data-
driven approaches, such as the different testing methods we listed
above (pilots, beta features, etc.). These tactics are much easier to
execute while still providing great insights and data for analysis.

20Build with Confidence: Your Guide to Scaling Product-Led Experimentation

AMPLITUDE CASE STUDY
Self-serve checkout volume

At Amplitude, we recently launched a self-serve checkout.
There wasn’t enough volume to run standard A/B tests, so we
opted to test with a pilot targeted at a segment of customers.
We then vigorously analyzed the impact pre vs. post-release.

Once we get more volume in our self-serve monetization
experience, there may be an opportunity to A/B tests in the
future. And since there’s more volume in other areas—like
the pricing page, upgrade triggers, and dashboard view—we
prioritize A/B testing these learning opportunities instead.

Don’t test for the sake of testing
Not everything should be up for experimentation. It is
unsustainable for your team to run tests in every product area.

Only experiment when:

•	 �Your test hypothesis aligns with the business strategy.
Your test needs to relate to the lever your org is focused on
influencing.

•	� You have enough traffic. If there’s not enough volume, it’ll
take a long time to show results.

•	 �Your test data will inform decision-making. If you don’t
need precise quantitative data to decide, a test isn’t necessary.

•	 The cost of running a test is lower than its potential impact.

Let’s say you want to test including an extra email in your
welcome flow to drive retention. There’s enough traffic, which
means you could test it. But do you really need to know the
impact of an additional email on the business to the last cent?
You’re better off testing a bigger bet and saving your team’s
capacity to focus on a potentially more impactful experiment,
like checking how users respond to a new feature.

Prioritize tests based on the cost of the test, its potential
impact, and your confidence that it will have an impact.

21Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Roll out experimentation across your
organization
Democratizing testing allows you to increase the velocity of learning
across your entire organization. However, democratizing too soon can
create chaos and data drift. Start by creating experimentation systems
on one team before rolling out testing across the organization.

When you’re ready to expand experimentation, focus on making testing
more efficient. Improve your processes and tooling to reduce the costs
associated with each experiment. This increases the number of tests
you can run across members and teams within your organization.

As you scale experimentation, teams also need permission to
experiment in multiple product areas. People need the ability to pull
a lever where it matters most. When engineers want to test but aren’t
allowed to write code in the surface area their hypothesis impacts, they
waste resources chasing tests that don’t deliver learnings.

Another situation that limits experimentation is when people are too
scared to test things related to their monetization model—like feature
allocation or prices. In this case, they restrict testing to less critical
areas like acquisition.

Experimenting close to your revenue conversion areas can be risky, but
if you don’t test these high-impact moments, you won’t understand
how to effectively optimize your monetization model. Instead, limit risk
by experimenting on small subsets of your traffic so you can roll back
the test quickly if your KPIs start to drop.

Make sure testing doesn’t paralyze decision-
making
While it’s true you should prioritize the velocity of learning by
increasing testing across your organization, there’s a limit. Too many
data points can slow you down.

When I worked with SurveyMonkey, we did a good job of increasing
our velocity of learning by developing a democratized culture of
experimentation. But then we hit an unexpected challenge: no one
wanted to release any feature without testing it first. Our team fell
victim to “analysis paralysis” since tests became too much of a crutch
and slowed down our innovation cycles.

To avoid analysis paralysis, ruthlessly prioritize the tests you run. First,
map the average traffic throughout each part of your product, then
assess your engineering capacity to help build, QA, and deliver each

Experimenting close to your revenue conversion areas

can be risky, but if you don’t test these high-impact

moments, you won’t understand how to effectively

optimize your monetization model. Instead, limit risk by

experimenting on small subsets of your traffic so you

can roll back the test quickly if your KPIs start to drop.

22Build with Confidence: Your Guide to Scaling Product-Led Experimentation

test. Next, use this information to identify how many tests you can run
and compare it to how many tests you are currently running to see if
you are under or over capacity.

If you are under capacity and can test more, empower more teams
to start experimenting in different product areas. If you are testing
at capacity but not learning much from your tests, consider running
different tests and reprioritizing your experimentation roadmap. If
you are over capacity, be more selective about the tests you run; more
testing isn’t always better.

Experimentation metrics
Each test should focus on one revenue-related lever; the remaining
levers become your guardrail metrics. Organize your metrics into a
data-hierarchy map.

In B2B, there are four main levers with KPIs that influence revenue:

•	 Acquisition metrics: prospecting traffic and new sign ups

•	 Activation metrics: set up, “aha” moment, habit-forming moment

•	 Engagement metrics: frequency of use: power, core, casual

•	 Monetization metrics: free-to-paid conversion, expansion, renewal

For each experiment you run, select one of the four levers as the
main success metric for the test. Track the remaining three as your
guardrails to de-risk your experiment. For instance, if you’re running

a test related to acquisition, set up a dashboard to monitor activation,
engagement, and monetization metrics.

If your test starts to harm these guardrail metrics, you will receive
rapid feedback, giving you a clear signal to roll back the test. With long-
running experiments, you can even monitor the impact of your test for
months after the test period is over since there could be latent effects.

As you build experiments and focus on guardrail metrics, be sure to
track the guardrails in time cohorts—for instance, what happened over
24 hours versus over one week. This step will help you identify if you
have a pull-forward effect or latent impact compared with tracking a
running total.

If your test starts to harm these
guardrail metrics, you will receive
rapid feedback, giving you a clear
signal to roll back the test.

https://amplitude.com/blog/data-hierarchy-map
https://amplitude.com/blog/product-metrics-guide
https://avc.com/2021/12/the-pull-forward/

23Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Create a culture of learning with
experimentation as your third data set
When considering the most important data for their business,
companies typically think about two primary datasets:

•	� Qualitative data, such as user needs and motivations captured by
user interviews.

•	� Quantitative data, such as transactional production data, behavioral
data, or third-party recorded data, such as CRM.

When teams only work with qualitative and quantitative datasets, they
tend to observe correlations between data points: action A relates to
action B in some way. But if you want to impact business, you need
to identify causal relationships—where action A causes outcome B.
Causal relationships tell you that if you move a certain lever, you’ll get a
certain outcome.

B2B organizations that invest in experimentation create a third dataset
from their experiment results, enabling them to identify causative
relationships. Plus, it informs your experimentation roadmap since you
can review results from previous experiments to accelerate learning
without harming your capacity to test.

To build your experimentation data set, create a repository of every test
you’ve run with clearly articulated results. Make the library accessible
to everyone, so people who work across all parts of your product can
add to and learn from it.

Enforce rituals around experiment results. Share experimentation
learnings with the whole organization (for example, at All Hands
meetings) in the same way as you’d share results from user interviews.
Include every test, regardless of whether they were “successful” or not.

Get started with an experimentation framework
To help you bring more value to your B2B organization with a sustainable
experimentation program, I created a seven-step experimentation

framework. Use it to ensure your efforts are aligned with business growth
and customer problems.

To dive into product experimentation further, check out my
Experimentation + Testing Reforge program.

https://amplitude.com/blog/causation-correlation
https://amplitude.com/blog/7-step-experimentation-framework
https://amplitude.com/blog/7-step-experimentation-framework
https://www.reforge.com/programs/experimentation-testing?utm_source=amplitude&utm_medium=referral&utm_campaign=comarketing&utm_term=&utm_content=experimentation_playbook

24Build with Confidence: Your Guide to Scaling Product-Led Experimentation

In recent years, big companies like Netflix changed the game when
it came to offering personalized user experiences.

The streaming platform provides users with tailored viewing
recommendations based on viewing history, search query, and
rating data. Instead of just showing one set of recommendations,
Netflix also uses A/B testing to experiment with different
suggestions and interfaces. With this experimentation, the
platform can iterate and refine its platform in real time based on
user preferences.

Until recently, this sort of work was only possible in large
companies that could invest in machine learning technology and
teams of data scientists running thousands of experiments every
year. But this is no longer the case. Third-party applications like
Amplitude Experiment put the power of feature management and
experimentation into the hands of organizations of all sizes.

Feature Management and
Experimentation: Two Sides
of the Same Coin

By Wil Pong
Amplitude

Third-party applications like

Amplitude Experiment put the

power of feature management

and experimentation into the

hands of organizations of all sizes.

https://amplitude.com/amplitude-experiment
https://amplitude.com/amplitude-experiment

25Build with Confidence: Your Guide to Scaling Product-Led Experimentation

As the head of experiment products at Amplitude, I have worked with
data pioneers like Netflix, Uber, LinkedIn, and Microsoft. I specialize in
democratizing advanced consumer-type techniques, such as feature
delivery, for companies of all sizes. In this chapter, I will discuss the
relationship between experimentation and feature management and
how these help teams deliver personalized experiences.

How does feature management relate to
experimentation?
Software’s big advantage over other products is that you can instantly
change it. When you build a PS5 controller and ship it off, you can’t
change the controller in that box once it leaves the factory. It’s already
out there. We can change software as fast as we have ideas.

Through feature management, we can use techniques like feature

flags that allow you to toggle on and off the specific features you
want your users to experience. You can also toggle different features
for specific user groups, or cohorts, based on their behavior or other
characteristics.

Using feature flags allows teams to test features in a production
environment. Normally, new features are released to specific cohorts,
not the entire user base. This way, development teams can gather user
feedback before fully releasing new features. When teams deliver A/B
tests, they go through this same process, which explains why technical
teams view experimentation and feature management as synonymous.

How does your experimentation system make
targeting possible?
It is critically important for your experimentation platform to have
identity resolution built into it—meaning the solution can identify the
same user even if they’re logging in from different devices or contexts.
Without identity resolution, you risk misidentifying your users, leading to
flawed experimentation and bad data. You could identify a power user as
a new user just because they’ve logged in through a new device.

If identity resolution isn’t built into your platform, you will need to
constantly ping other systems, like a CDP, to double-check your users’
identities. This will introduce more latency or lag to your system. You
will also incur the high costs of building integrations and managing data
pipelines between your platform and something like a CDP.

When you combine feature management capabilities with accurate
identity resolution, you suddenly have the ability to deliver highly
targeted experiences to the right cohorts of users. For product and
engineering teams, this is the pinnacle of A/B testing.

When you can reliably harmonize user identity in your evaluation
engine, you can create rules based on specific user attributes, like past
behavior and geographic location. These rules give you control over
who gets what features and when.

For example, you can carry out an experiment where only your power
users—people who log into your product more than three times a week

https://help.amplitude.com/hc/en-us/articles/360061687311-Working-with-feature-flags-and-feature-rollouts
https://help.amplitude.com/hc/en-us/articles/360061687311-Working-with-feature-flags-and-feature-rollouts
https://amplitude.com/blog/identity-resolution

26Build with Confidence: Your Guide to Scaling Product-Led Experimentation

and spend some minimum amount—get access to new deployments.
You want to test a new feature with your most valuable users to see
how they will react.

This type of targeting is only possible when you have an evaluation
system such as Amplitude Experiment that tracks the information
needed to segment these cohorts. If your experimentation system
does not have connections to this information, you’ll need to spend
significant resources connecting to relevant data sources, like CDPs or
data warehouses.

How does feature management differ from a
“WYSIWYG” approach?
The feature management approach to testing and deploying new
features is made directly at the code level. Other approaches to
deployment allow changes to be made on a surface level without
altering code. One such approach is through “What You See Is What
You Get” (WYSIWYG) user interfaces such as WordPress for websites

or Appy Pie for apps. These interfaces allow companies to make
deployments and experiment without using code.

However, using WYSIWYG for deployment has significant limitations.

WYSIWYG only works in limited cases
WYSIWYG gives you a small subset of things you can alter and only
works when you want to roll out changes for a fixed period. For
example, your growth and marketing teams may need to launch
holiday promotion coupons to new users through push notifications.
This example is an ideal use case for WYSIWYG A/B testing. You can
predominantly change colors, copy, or labels, which is why marketing
teams have historically used it on landing pages or website copy
changes.

On the other hand, testing and deploying on a code level allows
you to deliver a much wider range of experiences, whether they
are short-term or long-term updates. An ecommerce company, for
example, can use feature flags to stack rank its best products or new
promotions on screen or run tests on their onboarding experience more
holistically. Since you are making changes at the code level, product
and engineering teams can have far more control and flexibility on the
experiments and tests they choose to prioritize.

On the other hand, testing and
deploying on a code level allows you
to deliver a much wider range of
experiences, whether they are short-
term or long-term updates.

27Build with Confidence: Your Guide to Scaling Product-Led Experimentation

WYSIWYG is fast in the short
term but slow in the long term
WYSIWYG is not built into the flow of rapid
product innovation like CI/CD processes.
Instead, these approaches lead to parallel
processes for experimentation and product
development. WYSIWYG-based tests may
deliver actual value, but marketing teams will
have to wait for product and engineering teams
to have the capacity to deliver a long-term
update, interrupting their typical workflow to add
new capabilities to their product. As you can see,
WYSIWYG is designed for experimentation with
static or incremental changes, not complex or
dynamic experimentation scenarios.

By using feature flags, engineering teams can
build tests directly into their CI/CD processes,
allowing them to make the necessary changes
to backend systems and making it easy to roll
out the winner once the test is complete. When
combined with analytics, feature management
also allows developers to get more data about
every feature they release. This provides them
valuable insight into their work’s impact on the
broader organization—something that WYSIWYG
tools will never provide.

WYSIWYG-based tests may deliver

actual value, but marketing teams

will have to wait for product and

engineering teams to have the

capacity to deliver a long-term update.

28Build with Confidence: Your Guide to Scaling Product-Led Experimentation

organizations through personalized experiences—even if you don’t have
millions of users visiting or engaging with your product every day.

If your experiment platform has a robust approach to identity
resolution and delivery, product teams can deliver highly targeted
experiments and feature releases using the same processes and
technology that power the rest of your product development. This will
ultimately drive rapid innovation without disrupting technical teams.

WYSIWYG slows down the performance of your
application or web page
When you use WYSIWYG, you’re overlaying a website on top of your
main website, which can negatively affect loading times—sometimes
doubling or even tripling it. This overlaying can also lead to the flicker
phenomenon—when a web page or application’s user interface changes
or reloads, causing a visual disturbance or glitch that can distract
users. This happens because changes to the visual interface are not
immediately reflected in the code.

There has also been considerable research highlighting that any
impact on performance has a significant impact on conversion rates.
At Amazon, a 100-millisecond slowdown experiment decreased sales

by 1%. This stat helps to highlight why product and engineering teams
need to be mindful of their experimentation solution’s performance.

Although deploying features through WYSIWYG is much easier, it is
ultimately not as extensive, effective, or efficient as using a feature
management approach.

Product experimentation delivers faster
innovation and ROI without disrupting
development cycles
As the Netflix’s of the world have shown, product and engineering
teams have a huge opportunity to deliver more ROI to their

If your experiment platform has
a robust approach to identity
resolution and delivery, product
teams can deliver highly targeted
experiments and feature releases
using the same processes and
technology that power the rest of
your product development.

http://glinden.blogspot.com/2006/04/early-amazon-shopping-cart.html
http://glinden.blogspot.com/2006/04/early-amazon-shopping-cart.html

29Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Critical Capabilities for Product and Engineering
Teams to Scale Experimentation Programs

Product and engineering teams can stumble trying to build a data-driven culture when they focus too much
on technology decisions before defining their specific business requirements.

Once business objectives are defined, then product organizations
should start looking for the essential capabilities they need to scale
their experimentation platform.

This section provides a baseline of functional capabilities that
product and engineering teams should consider when investing in
product-led experimentation.

Guide teams to deliver trustworthy
experiments every time
Experiment design is a critical part of any A/B test. Teams new
to A/B testing can suffer major data quality issues due to poor
design and implementation. Best-in-class tools reflect testing
best practices, helping teams deliver high-quality tests and make
optimal product decisions.

Another important consideration is the variety of testing capabilities
your team needs to succeed and scale their programs. Mutual
exclusion groups ensure teams can better manage simultaneous tests
by restricting traffic across colliding tests. Holdout groups ensure that
some traffic is restricted from ever being exposed to experiments,
providing a new way for teams to baseline their tests.

KEY QUESTIONS

•	� Does the solution adhere to A/B testing best practices
and key testing milestones like hypothesis development,
targeting, delivery, allocation, monitoring, and analysis?

•	� Can I easily understand how much traffic and how long my
test will need to run within the UI?

•	� Can I seamlessly access my key metrics for my A/B tests?

30Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Trustworthy statistical rigor and support for
your most important use cases
Understanding the statistical rigor of your experimentation platform is
another important consideration for product experimentation. While
there is no “right” answer regarding the “best” statistical methodology,
each approach does have its tradeoffs and advantages. Understanding
your experiment platform’s approach is important in order to have the
utmost confidence in your results.

Some statistical methodologies, like Sequential Testing, allow product
teams to peek at results midstream without impacting their results.
Whereas T-Tests are more popular, but require teams to wait until
the test concludes to see their results - otherwise they risk degrading
their results. While these differences may appear trivial, they can have
profound implications for experimentation programs.

Another important consideration is the types of testing use cases your
team needs to succeed. Teams can choose from a wide variety of use
cases, including A/B tests, multivariate testing, multi-armed bandits,
do no harm tests, quasi-experimentation, and more. Teams should also
prioritize solutions with built-in capabilities to reduce the variance in
their experiment data using advanced methodologies like CUPED and to
solve the multiple comparisons problem like the Bonferroni Correction.

Selecting the vendors with the most capabilities available today may
not always be the best solution for your team. Highly specialized point
solutions can create major headaches for under-resourced engineering
teams when they have to manage duplicative data sets, build and

maintain expensive data pipelines, and manage kludgy integrations to
run tests. It’s critical to understand the underlying technical challenges
that may arise from adding another point solution to your stack.

Teams should define what they need to be successful, what resources
they have available, and the maintenance requirements for the solution
(or combination of solutions) they choose.

KEY QUESTIONS

•	� What statistical methodologies are used in the solution?
Some examples include Sequential Testing, Fixed Horizon
T-Test, Two-sided T-Test, and Bayesian Inference.

•	� Do I have the flexibility to alternate between different
methodologies to design optimal experiments for my
use case?

•	� If I peek at results during the test, can this skew my results?

•	� What types of experiments do I need to run to maximize my
product investments?

•	� Will I need to build and maintain data pipelines or
integrations to run effective experiments?

•	� If I do need to leverage data pipelines and integrations, which
team(s) will be responsible for ongoing maintenance?

31Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Managing user identity across devices for
accurate targeting and allocation
One of the most crucial functional requirements for experimentation
is the ability to manage user identity across devices and platforms -
even if they are not logged in. Today’s user has multiple devices and
is often not logged in, which adds considerable complexity for teams
trying to gain a clear understanding throughout each step of the
customer journey.

While many solutions claim they can manage user identity, this
requires more complex data mapping, deduplication, and scrubbing
than product and engineering teams might recognize. Attempting to
map devices across platforms and user identities quickly becomes
extremely complicated at scale and using a disparate tech stack. All
of these tools and data sets have to be stitched together using brittle
integrations and expensive data pipelines. This leaves engineering
teams in a difficult spot to maintain it and leaves analysts to try to
make sense of it all.

Without the ability to harmonize user identity, it becomes next to
impossible to confidently target experiments and releases across
devices and platforms. When teams can’t resolve user identity, it
becomes far more likely to suffer degraded experiment results due to
sample ratio mismatch or variant jumping.

But with natively integrated capabilities across analytics and
experimentation, these challenges disappear since you have one
unified data set. You have the flexibility to accurately target specific

users, cohorts of users, accounts, and even attributes like user
operating system, device type, geography, user behavior, and more.

This also ensures teams can test using sticky bucketing meaning that
users will only see one variant during a test regardless of which device
they use.

The ability to resolve user identity is a critical piece to get right for
every experimentation program. When product and engineering teams
evaluate experimentation capabilities, this is one of the most important
ones to get right. Otherwise, teams will struggle to successfully drive
ROI from product-led experimentation.

32Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Deliver reliable experiment data with
automated data checks
One of the benefits of using pre-packaged experimentation
platforms is the ability to improve data quality and reliability using
automation. While teams can run stats packages on data sets in
Python or R to determine statistical significance, this leaves teams
open to missing potential data quality issues like sample ratio
mismatch (SRM) or variant jumping. This is easily missed because
using stats packages only evaluated the results of the test—not if the
test was implemented correctly.

With built-in data guardrails, an ideal solution should automatically
identify and notify teams about potential issues before they degrade
experiment data—not after. By automatically checking for these issues
in-app, teams can be confident that their results and approach which
leads to trustworthy data and analysis.

KEY QUESTIONS

•	� Does the solution help teams remediate issues like sample
ratio mismatch (SRM) or variant jumping?

•	� Does the solution support changepoint detection?

•	� Does the solution help identify potential outliers?

Best-in-class analytics and instrumentation for
accurate and trusted results
You need robust data visualizations and deep analytics capabilities
for successful experimentation. Analytics and tracking enable teams
to interpret the results of an experiment and deeply understand the
performance of each test drove. Without these capabilities, your team
will have a difficult time deciphering what happened and will slow
down your velocity since teams will spend more time debating what
they should do next.

Some teams rely on an analytics point solution to visualize results
and run deeper analyses. While this can work, it often results in teams
getting double-charged for data events across multiple tools, wasting
resources and budget. If teams can visualize data, drill down into key
audiences, and get a deeper understanding of their experiments all in
one platform, they are better positioned to make data-driven decisions
faster and with less overhead.

Teams also benefit from the ability to seamlessly create and share
dashboards about each experiment. The best solutions can summarize
all of the relevant information about each experiment including the
research behind the test, the initial hypothesis, targeting, analysis of
each variant, and the ultimate decision made at the end of the test.
This enables teams to easily share insights and improve collaboration.
Easily shareable insights also help teams democratize learning across
the entire product organization.

33Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Teams should also consider how they will ensure standard metrics
definitions across their stack, which often leads to inconsistent data.
While this may seem like a trivial inconvenience, it quickly leads to
painful consequences. Even if someone adds a filter to a data set in
one platform, this can lead to inconsistent test results and harm
data-driven cultures.

When executives and other teams see inconsistent data, no one can
trust any shared insights, ultimately slowing teams down. While teams
can try to alleviate this concern with data pipelines, the maintenance
required to stand them up leads to significant headaches, high costs,
and does not eliminate the risk of inconsistent data.

KEY QUESTIONS

•	� How do you visualize experiment results?

•	� How do I integrate your solution with my analytics platform?

•	� Will this integration lead to extra data consumption charges?

•	� How can I ensure consistent metrics definitions within my
experiment across platforms?

Manage scaled programs and unblock teams
with seamless program management and in-
depth support
Teams looking to scale experimentation need to be able to manage
their entire experimentation program, which could consist of dozens of
experiments and releases simultaneously.

Each release goes through a specific set of milestones throughout its
lifecycle and program managers need to be able to quickly understand
what to do next rather than try to keep track of their programs on an
ad hoc basis. Solutions that support sorting, filtering, and organizing
experiments and releases help teams manage multiple experiments
simultaneously.

34Build with Confidence: Your Guide to Scaling Product-Led Experimentation

KEY QUESTIONS

•	� How do I manage multiple experiments
and releases simultaneously?

•	� Can I easily create, archive, or edit my
experiments and releases?

•	� Where can team members get support if
they get stuck?

•	� Are there support resources available like
in-app guides, online learning modules,
community forums, and documentation?

Another consideration is supporting less experienced
team members within the experience. Access to
better education resources, professional services,
user communities, and clear documentation unblocks
and upskills team members more quickly than relying
on a single person or team. These capabilities help
experimentation programs scale.

Access to better education

resources, professional services, user

communities, and clear documentation

unblocks and upskills team members

more quickly than relying on a single

person or team. These capabilities help

experimentation programs scale.

35Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Safely deliver releases without sacrificing
performance
Engineering teams need solutions that align to their preferred workflow
and CI/CD processes. Best-in-class experimentation platforms
leverage enterprise-grade feature management capabilities to deliver
targeted experiences and releases safely. You also need the ability to
process data in near real-time to truly understand each test’s impact
for on-the-fly analyses.

Another consideration is the latency that your tests will add to your
user experience. Since latency will always negatively impact your
conversion rates, this is a tradeoff teams need to understand as they
build their experimentation programs. There can be scenarios where
adding milliseconds of latency is worth it if you can incorporate user
context into your tests. Teams must define this for themselves but
should consider performance before investing in a solution.

KEY QUESTIONS

•	� How does the solution deliver experiments?

•	� How quickly does the solution process data?

•	� How much latency is introduced with the
experimentation platform?

KEY QUESTIONS

•	� Does the solution have client-side SDKs in the languages
I need?

•	� Does the solution have server-side SDKs in the languages
I need?

•	� Does the solution offer an API to manage experiments and
release programmatically?

•	� Does the solution have integrations to my core systems like
data warehouses and analytics platforms?

Best-in-class developer tooling and extensibility
into my core systems
Developers need the right technical tools to successfully implement
experimentation platforms. Specifically, they need client-side
and server-side SDKs to implement tests in their environment’s
programming languages.

They will also need robust APIs to deliver experiments and manage
releases programmatically. Teams should also consider what
integrations they need to connect experiment data to their broader
data ecosystem and tech stack.

36Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Enterprise-grade security, compliance,
governance, and scalability
If your solution does not adhere to best-in-class security compliance,
governance, and scalability, you will add significant risk to your
organization. While these certifications and capabilities are not central
to the core user experience, they are critical to your program’s success.

Ensure you understand which security certifications your solution
complies with, how robust user access controls are, the ability to
audit changes to experiments and releases, and how well their data
infrastructure can dynamically scale. You should also understand how
many tests you can run simultaneously with your platform of choice.

KEY QUESTIONS

•	� What security certifications does the solution have today?

•	� Does it provide SSO?

•	� What level of roles-based access controls does it include?

•	� Can the platform scale dynamically at data volume?

•	� Are there any limits to the number of experiments I can
perform at any time?

37Build with Confidence: Your Guide to Scaling Product-Led Experimentation

CAPABILITIES DESCRIPTION PRIORITY?
(Must have, Should
have, Nice to have)

CAPABILITY RATING (0 TO 3)

Hypothesis generation Ability to define hypothesis in-app 3 - Available
0 - Not available

Metrics selection Ability to leverage key analytics metrics for
experiments

3 - Available
0 - Not available

Guardrail metrics Ability to select guardrail metrics within an
experiment

3 - Available
0 - Not available

Sample size calculation Ability to understand how long an experiment
will need to run in order to reach statistical
significance

3 - Available
0 - Not available

Experiment templates A standardized set of metrics and segments for
every experiment or release

3 - Available
0 - Not available

Holdout Groups Designate traffic to never see experiments for
baselining purposes

3 - Available
0 - Not available

Mutual Exclusion
Groups

Separate colliding tests to ensure experiment
traffic is not shared

3 - Available
0 - Not available

Long-running
experiments

Ability to analyze tests outside of their experiment
duration window and view historical results

3 - Available
0 - Not available

Experiment Design
FUNCTIONAL REQUIREMENTS

Bringing it all together: Critical capabilities to deliver experimentation at scale

38Build with Confidence: Your Guide to Scaling Product-Led Experimentation

CAPABILITIES DESCRIPTION PRIORITY?
(Must have, Should
have, Nice to have)

CAPABILITY RATING (0 TO 3)

Offers statistical
analysis
out of the box

Statistical approaches include:
• Sequential testing
• Fixed Horizon T-test
• Two-sided T-test
• Bayesian Inference
• CUPED
• Bonferroni Correction

3 - Multiple methods available
2 - One method available
0 - Stats analysis outside of the application

Supports the
experimentation use
cases we need today

Common use cases include:
• A/B Tests
• Multivariate testing
• Nested experiments
• Do no harm tests
• Multi-armed bandits
• Quasi-experimentation

3 - Supports all use cases I need
2 - Supports all but 1 use case
1 - Supports some use cases
0 - Supports none of my use cases

Experimentation Use Cases
FUNCTIONAL REQUIREMENTS

39Build with Confidence: Your Guide to Scaling Product-Led Experimentation

CAPABILITIES DESCRIPTION PRIORITY?
(Must have, Should
have, Nice to have)

CAPABILITY RATING (0 TO 3)

Managing user identity
for known and
anonymous users

Ability to connect user ID to device ID across
platforms at scale without development effort

3 - Available natively
1 - Support requires data pipelines, integrations
0 - Not available

Cross-platform testing Ability to test across devices and platforms
natively

3 - Available natively
1 - Support requires data pipelines, integrations
0 - Not available

Targeting Ability to target a variety of use
cases natively:
• By user
• By user cohort
• �By any user property (platform, device, geo)
• By user behavior

3 - Available natively
1 - Support requires data pipelines, integrations
0 - Not available

Randomization The methodology used to randomize traffic
which can also include stratified sampling

3 - Available
0 - Not available

Sticky bucketing Ensure users will see the same variant even if
your experiment’s targeting criteria, percentage
rollout, or rollout weights are changed

3 - Available natively
1 - Support requires data pipelines, integrations
0 - Not available

Account-level
bucketing

Ability to bucket traffic by account level rather
than only user-level

3 - Available
0 - Not available

Allocation and Targeting
FUNCTIONAL REQUIREMENTS

40Build with Confidence: Your Guide to Scaling Product-Led Experimentation

CAPABILITIES DESCRIPTION PRIORITY?
(Must have, Should
have, Nice to have)

CAPABILITY RATING (0 TO 3)

Robust data
visualizations

Ability to visualize results across a variety of
charts

3 - Available natively
1 - Support requires data pipelines, integrations
0 - Not available

Statistical
visualizations

Ability to visualize statistical concepts like
confidence intervals, statistical significance
achieved, and more

3 - Available natively
1 - Support requires data pipelines, integrations
0 - Not available

Drill down into results
and visualizations

Ability to drill into charts for deeper insights 3 - Available natively
0 - Not available

Dashboards and
reporting

Ability to add experiments to dashboards for
knowledge sharing and collaboration

3 - Available natively
0 - Not available

Ability to segment by
user behavior, any user
cohort, group of users,
or by any user property

Native segmentation for deeper insight into
sub-groups that are under or over-performing
relative to the rest of your users
• By user behavior
• By any user cohort
• By any user property (platform, device, geo)

3 - Available natively
0 - Not available

Recommendations on
the next best action

Guided interpretation of your results and clear
recommendations for your next best action

3 - Available
0 - Not available

Metrics, Analytics, and Data Visualization
FUNCTIONAL REQUIREMENTS

41Build with Confidence: Your Guide to Scaling Product-Led Experimentation

CAPABILITIES DESCRIPTION PRIORITY?
(Must have, Should
have, Nice to have)

CAPABILITY RATING (0 TO 3)

Proactively identify
potential data quality
errors

Debug and notify teams about critical data
quality errors

• Sample ratio mismatch (SRM)

• Variant jumping

• Exposure events without assignment events

• Suspiciously high uplift detection

• Changepoint detection

• Outlier detection

3 - Available natively

1 - Support requires data pipelines, integrations

0 - Not available

Data Guardrails
FUNCTIONAL REQUIREMENTS

View experiment or
flag impact to any
metric

Understand how each test impacts key KPIs
using multiple types of data visualizations

3 - Available
0 - Not available

Metrics definitions Ability to define and manage metrics within the
UX without managing data pipelines

3 - Available natively
0 - Not available

Consistent metrics
definitions across apps

Native ability to ensure consistency across apps 3 - Available natively
0 - Not available

42Build with Confidence: Your Guide to Scaling Product-Led Experimentation

CAPABILITIES DESCRIPTION PRIORITY?
(Must have, Should
have, Nice to have)

CAPABILITY RATING (0 TO 3)

Lifecycle management Manage simultaneous tests to understand
the next required action and the number of
experiments and releases across my team. Ability
to filter active, archived, or completed tests.

3 - Available
0 - Not available

Lifecycle updates Ability to rollout, rollback, create, delete, or edit
tests without developer intervention

3 - Available
0 - Not available

In-app notifications In-app guidance to remediate key issues or
when key testing milestones are met including
reaching stat sig, experiment completion, and
more

3 - Available
0 - Not available

Support available
in-app

Assist teams new to experimentation directly
from the application

3 - Available
0 - Not available

Professional services Offerings focused on implementation, training,
and onboarding

3 - Available
0 - Not available

Self-paced learning
resources

Access to interactive learning modules 3 - Available
0 - Not available

Access to user
communities

Fosters a user community 3 - Available
0 - Not available

Online help and
documentation

Access to up-to-date documentation and help
resources

3 - Available
0 - Not available

Program Management
FUNCTIONAL REQUIREMENTS

43Build with Confidence: Your Guide to Scaling Product-Led Experimentation

CAPABILITIES DESCRIPTION PRIORITY?
(Must have, Should
have, Nice to have)

CAPABILITY RATING (0 TO 3)

Feature flags Deliver experiments using feature flags for full
stack experimentation

3 - Available
0 - Not available

Data processing in
near real-time

Ability to analyze data at near real-time 3 - Refresh data at least once per minute
1 - Refresh data at least hourly
0 - Slower than one hour

Evaluation
performance

Expected latency during an experiment and
understanding of what tradeoffs are made

Flexible approach to
evaluation scenarios

Ability to select remote or local evaluation 3 - Available
0 - Not available

Experiment on
user context with
high-performance

Deliver highly performant experiments with
user context

3 - Available
0 - Not available

JSON payloads Ability to inject JavaScript into each variant for
on-the-fly adjustments to text, colors, images,
and more

3 - Available
0 - Not available

QA checks Ability to QA tests or flags before they are
rolled out

3 - Available
0 - Not available

Progressive rollout Define allocation percentage for rollout 3 - Available
0 - Not available

Rollback Ability to roll back a test and restore to a
previous version if necessary

3 - Available
0 - Not available

Delivery and Performance
FUNCTIONAL REQUIREMENTS

44Build with Confidence: Your Guide to Scaling Product-Led Experimentation

CAPABILITIES DESCRIPTION PRIORITY?
(Must have, Should
have, Nice to have)

CAPABILITY RATING (0 TO 3)

Client-side SDKs
available

Languages:
• Android
• iOS
• Web
• React Native
• ________

3 - Key languages available
2 - Most languages available
1 - Some available
0 - Not available

Server-side SDKs
available

Languages:
• Node
• JavaScript
• Python
• ________

3 - Key languages available
2 - Most languages available
1 - Some available
0 - Not available

API support to manage
experiments and flags
programmatically

Offers API access import and export of data 3 - Available
0 - Not available

Integrations with your
core technology

• Snowflake
• Slack
• Braze
• ________

3 - Key integrations available
2 - Most integrations available
1 - Some available
0 - Not available

Integration with product
analytics

Integration with analytics platforms like
Amplitude

3 - Available natively
1 - Support requires data pipelines, integrations
0 - Not available

Recommendations on
the next best action

Guided interpretation of your results and clear
recommendations for your next best action

3 - Available
0 - Not available

SDKs, APIs, and Extensibility
FUNCTIONAL REQUIREMENTS

45Build with Confidence: Your Guide to Scaling Product-Led Experimentation

CAPABILITIES DESCRIPTION PRIORITY?
(Must have, Should
have, Nice to have)

CAPABILITY RATING (0 TO 3)

Security certifications
critical to my business

• SOC 2 Type 1
• SOC 2 Type 2
• ISO27001
• ISO27018
• GDPR
• CCPA
• HIPAA

3 - Offers all certifications I need
2 - Offers all but one key certification
1 - Offers some certifications I need
0 - Not secure enough for my business

Single Sign-On (SSO) Offers SSO 3 - Available
0 - Not available

Data encryption Ensures data is fully encrypted 3 - Available
0 - Not available

Robust user
permissions

Offers robust roles-based access controls
across teams and projects

3 - Available
0 - Not available

Audit of changes and
updates

Ability to quickly understand when changes
were made to flags and experiments

3 - Available
0 - Not available

Elastic scalability Ability to scale dynamically as traffic increases 3 - Available
0 - Not available

Experimentation at
scale

No limits to the number of tests that can be run
in parallel

3 - Available
0 - Not available

Security, Compliance, Governance, and Scalability
FUNCTIONAL REQUIREMENTS

46Build with Confidence: Your Guide to Scaling Product-Led Experimentation

For a growing company to thrive and remain competitive, it
needs experimentation at the core of its product development
process. Experimentation capabilities allow companies to run
product performance tests, collect data, and analyze results. They
provide insights about user behavior and preferences that help
companies create sticky user experiences, improve conversions,
and drive engagement.

A frequently asked question is: Should a company build its
experimentation tool or purchase one from a third-party vendor? The
age-old debate of build vs. buy is challenging due to the complexity of
experimentation platforms, the costs and resources required, and how
each option aligns with your overall strategy.

 I have worked on data experimentation with companies like
Convoy, Microsoft, and SEPHORA, where I have had to build and buy
experimentation platforms. In this chapter, I will discuss the most
common trade-offs product and engineering teams should consider
when deciding whether to build or buy an experimentation platform.

Build vs. Buy: A Guide
to Selecting Your
Experimentation Platform

By Chad Sanderson

Successful experimentation platforms enable
faster innovation, data-driven cultures, and
better stakeholder alignment
Before discussing the specific tradeoffs associated with each choice,
let’s start with what success looks like. Success is validating new ideas
before fully deploying them using an experimentation platform. This
is a game-changing and magical experience for many product and
engineering teams.

Without an experimentation platform, product and engineering teams
launch new features without knowing how their core metrics are
impacted. There’s a lot of guesswork involved. Experimentation tools
allow teams to easily and concretely measure performance, simplifying
their decision-making process on what to invest in.

47Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Before teams decide whether to build vs. buy, they need to define
the key metrics and KPIs they will measure. If your experimentation
tool doesn’t let you measure the impact of testing with key business
metrics—like revenue or profit margin—it’s hard to justify the ROI of
experimentation in general.

We needed to overcome the measurement challenge while I was at
Convoy. At Convoy, the entities we cared most about were shipments,
contracts, facilities, and geographic regions. As we began to evaluate
the build vs. buy question, we needed experimentation capabilities to
align with our product development philosophy. That is, we needed an
experiment for any feature deployment or release that could affect any
of these entities. This was a mandatory requirement for our build vs.
buy decision.

The right experimentation capabilities have advantages beyond faster
innovation. They can also help win buy-in from leadership and other
stakeholders. For example, a CPO often needs to justify additional
investment and resourcing from their CFO. Experimentation platforms
can provide beneficial reporting and analytics to highlight which product
updates have generated meaningful ROI and how new investments can
continue delivering innovation and value to the organization.

How to approach the build vs. buy decision
When organizations recognize they need to invest in experimentation
capabilities, they face a decision: Do I build a tool from scratch, or do I
buy a pre-packaged solution instead?

Product and engineering teams should evaluate these five factors when
they consider the build vs. buy question:

1.		� Cost: How much will buying an out-of-the-box solution cost compared
to building your in-house solution? When determining the cost of an
in-house solution, make sure to account for line items like hiring and
training developers, hardware and software expenses, integrations,
and ongoing maintenance. For pre-packaged software, consider
licensing costs as well as training and services.

2.		� Time: How long will building your software in-house take as opposed
to purchasing and onboarding a pre-built solution?

The right experimentation
capabilities have advantages
beyond faster innovation.
They can also help win buy-
in from leadership and other
stakeholders.

48Build with Confidence: Your Guide to Scaling Product-Led Experimentation

3.		� Expertise: Does your current team have the technical know-how to
build and maintain experimentation software?

4.		� Customization: Do the pre-built solutions available meet your
company’s specific needs and requirements?

5.		� Competitive advantage: Consider whether building software in-
house or a pre-built solution will offer features that help you build
better products than your competitors.

Ultimately, the decision to buy or build software depends on your
specific needs and the resources you have available. Careful
evaluation of these factors can help determine the best option for
your organization.

The “build” argument: Pros and cons
Building your experimentation solution might sound like a good idea,
particularly if you have the resources to do it, but it has its trade-offs.
Here are some pros and cons of building in-house based on the five
factors mentioned above:

The advantages of building your experimentation platform include:

	� It allows for more customization. If your company has unique
needs that existing experimentation platforms cannot meet, it may
be necessary to build your platform. For example, if you need to
integrate with a specific data source or use a custom statistical
algorithm, building your own platform may be the best option.

	 �It gives you access to all of your data. Building your solution gives
you access to your own databases, data lakes, or data warehouses.
You can carry out anything from aggregations to writing SQL—your
data never has to leave your system.

	 �It might give you a competitive advantage. Building your
platform gives you flexibility. You can customize the tool to meet
the changing needs of your organization. In the process, you may
have created software that addresses a need not yet solved in
the market.

	 �If you deal with large volumes of experiments and experiment
data, it can be more cost-effective. By building your platform,
you’ll have more control over resources and will be less dependent
on external providers.

But there are some considerable drawbacks to building your solution:

 	 �It is very expensive. Building your experimentation platform can
be costly and time-consuming. If you’re building your platform
internally, that’s a minimum of three to four engineers, one to two
data scientists, a product person, and a manager to oversee the
project. This can cost organizations millions of dollars to maintain
that system every year.

 	� It is time-consuming. Building from the ground up will take
significantly longer than buying a solution out of the box and could
take several quarters to create a functioning MVP, let alone a
production-ready solution.

49Build with Confidence: Your Guide to Scaling Product-Led Experimentation

 	 �It requires specific expertise. Building your experimentation
platform requires a high level of expertise in software
development, data analysis, and statistical modeling. If you have
a team with the necessary skills, building your own platform may
be a viable option, but your team members will need to spend the
bulk of their time on this project. The other challenge is having a
backfill plan to replace this expertise if a team member leaves your
organization.

Building your experimentation solution requires significant expertise
and resources, but it may be worthwhile in the right organization.

The “buy” argument: Pros and cons
Alternatively, there are several reasons why it may be better to use an
existing experimentation platform. Out-of-the-box solutions get the job
done for the majority of companies since many company requirements
are not that complicated.

Here are a few pros and cons of buying pre-built experimentation
software based on the five factors mentioned earlier:

The advantages of buying an experimentation platform include:

	 �It is highly cost-effective. More often than not, using an existing
experimentation platform is significantly cheaper than building
one yourself.

	 �It requires much less time to get started. One of the major
advantages of purchasing out-of-the-box solutions is that you can
get started immediately, particularly if you find a solution with
short onboarding timeframes.

	 �It’s not as time-consuming for your dev teams. Building your own
solution will take up most, if not all, of your development team’s
time and resources. Buying a pre-built solution frees them to focus
on running experiments and other business-critical tasks.

	 �It doesn’t require specific expertise. The main reason you would
want to build your own solution is that you have robust and
complicated feature requirements and the resources available to
execute. In these cases, it is unlikely that your sales or marketing
teams will figure out how to use it. Ready-built solutions are easy
to use, which helps organizations achieve data democratization.

	 �You still have access to experts. Most pre-built software plans
provide access to experts who have already developed and tested
the software.

	 �Many pre-built solutions are designed to have a degree of flexibility
and customization. It might not be as much customization as an
in-house solution, but you may still be able to achieve your desired
functionality.

	 �Quicker time to market. The time you save in purchasing a pre-built
solution means you enjoy much faster time to market, which will
give you an edge over competitors.

50Build with Confidence: Your Guide to Scaling Product-Led Experimentation

While there are considerable advantages to buying an experimentation
platform, a few tradeoffs also exist:

 	� There are typically fewer customization options. But it’s important
to consider whether customization is necessary and whether you
can achieve it on some level with a pre-built solution.

 	� No competitive advantage. You may not have the competitive edge
of a unique software, but this might not be a priority, especially if a
pre-built solution provides more functionality than what you could
develop in-house.

Established experimentation platforms have also been tested and used by
a large number of users, so they’re often more reliable and stable than a
custom-built solution. And most out-of-the-box solutions come with easier
integration requirements with other in-house solutions you’re running.

Making the decision: Build or buy?
Ultimately, whether or not to build your experimentation platform
from scratch or buy an out-of-the-box solution comes down to two
factors—purpose and resources. You first need to figure out what
your requirements are. If something on the market meets those
requirements, you have your answer.

It simply doesn’t make much sense to build something that another
product is already doing better and will cost you less. Pre-built
solutions are the product of massive teams of experts with diverse skill
sets who do all the legwork, so you don’t have to. Since these products
are built at scale, they are also more cost-effective.

Considering the huge costs of building your experimentation solution,
organizations should only opt for this route when the opportunity cost
of not building exactly what you need is very high. But if you evaluate
this critical decision based on the five key factors—cost, time, in-house
expertise, customization needs, and competitive advantage—your
organization can create a data-driven product culture.

51Build with Confidence: Your Guide to Scaling Product-Led Experimentation

In this chapter, we will show how product, data,
and engineering teams can work together to scale
product-led experimentation. You will learn how
Amplitude’s unified Digital Analytics Platform drives
efficient innovation through natively integrated
experimentation with self-serve analytics.

Today, we are part of the product organization
at AmpliStore. At Amplistore, our focus is to
encourage more users to join our loyalty program.
This is a key goal for our business since Amplitude
Analytics has demonstrated that users who join the
loyalty program have higher revenue per user and
better retention.

For our demonstration, we will highlight how Product
Managers, Data Analysts, and Engineers can work
together to build a culture of experimentation built
into the core of their product development process.

How Amplitude
Experiment Guides
You to Scale
Experimentation

Amplitude’s unified Digital
Analytics Platform drives efficient
innovation through natively
integrated experimentation with
self-serve analytics.By Audrey Xu

Amplitude

52Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Maximize your experimentation program with end-to-end lifecycle management

Product teams understand the value experimentation delivers to their
product experience. But managing a scaling experimentation program
is challenging when your team could be running dozens of experiments
at a time. Product teams need to understand the status of every test
running and be guided to their next best action in one view. This is
exactly what Amplitude Experiment was designed to do.

When you open the Experiment homepage, you will see an at-a-glance
overview of every experiment in your program. At the top of the page,
the Summary Card provides guidance about which experiments are
ready for a decision, making it easy to manage AmpliStore’s entire
experimentation program from the homepage.

After reviewing the loyalty experiment, it’s clear this experiment variant
won based on its performance relative to our control variant. Now, we
can easily roll out this variant to the rest of our users in a phased roll
out. We can also add this to our Notebook, which provides the rest of
our product organization a clear view into the insights that guided us to
run this experiment, the hypothesis we created, the metrics used, our
variants, and ultimately the outcome of the test.

Notebooks help us build a culture of experimentation and learning
at AmpliStore by democratizing our learnings to the rest of the team,
improving collaboration.

https://amplitude.com/amplitude-experiment
https://help.amplitude.com/hc/en-us/articles/360016281172-Notebooks-Explain-important-insights-to-teammates-and-stakeholders

53Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Ensure high-quality experiments and trusted
results with a workflow-based UX
As a Product Manager at AmpliStore, I am constantly using Amplitude
Analytics to better understand what users are doing (or not doing)
in my product. I create a Funnel Analysis chart to understand how
often users join the loyalty program after completing a purchase
at AmpliStore.

I quickly realize that this cohort of users is not joining our loyalty
program. Conversion rates are currently at 12.3%, but we had
expected closer to 24% conversion based on the exclusive discounts

we offered as part of a recent release. These users are still completing
purchases but not joining the loyalty program—the conversion event we
want to drive.

I use the Microscope and create a new cohort—“Users who completed
purchase but did not join loyalty program”—with one click. This
cohort is now available for me to run a targeted experiment on them
since these capabilities are natively integrated in Amplitude’s Digital
Analytics Platform.

I take these insights to our engineering and design teams to have
them build out the code for our test. While they build the code, I
select “Create new Experiment” in Amplitude. When I create a new
experiment, I start in the Plan tab. Amplitude Experiment incorporates
a workflow-based design built to ensure teams adhere to best
practices for experimentation. One of the primary ways teams suffer
from degraded results is from poor experiment design. Our product
is purposefully designed to automatically incorporate these best
practices through our user experience, ensuring teams can trust their
results at every step.

Our product is purposefully designed
to automatically incorporate these
best practices through our user
experience, ensuring teams can trust
their results at every step.

https://amplitude.com/blog/funnel-analysis

54Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Next, we add our primary metric, “Loyalty Program Signups” to
our experiment. The drop-down shows me that every event and
metric tracked in Amplitude Analytics is automatically available to
us in Experiment.

That means we do not need to worry about consistent metrics
definitions across our analytics and experimentation platforms—a
common and potentially costly challenge when teams have disparate
tech stacks. With a unified stack, teams no longer have to build and
manage data pipelines or suffer from targeting limitations.

I now have access to our built-in Sample Size Calculator to understand
how long this test will need to run before we reach statistical
significance based on AmpliStore’s traffic. We select “Install App” as
our proxy metric since we assume that this action is correlated with
“Loyalty Program Sign Up” since customers downloading our app are
more likely to join our loyalty program than customers who do not.

55Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Deliver targeted experiments with full control
After engineering finishes building and reviewing the code, they configure the feature flag to the appropriate deployment and add the code for each
variant directly into the user interface. Amplitude Experiment delivers each test using flags, ensuring each variant is delivered safely to each end user.

56Build with Confidence: Your Guide to Scaling Product-Led Experimentation

I configure the roll-out percentages and add the “Users who completed purchase but did not join loyalty program” cohort identified in Analytics for
targeting. This is one of three ways teams can target users within Amplitude—user device ID, rule-based segments, or non-targeted users.

Now that our experiment is set up, we can activate the experiment.

A few days later, I want to see how the experiment is going. Amplitude Experiment uses sequential testing for our stats analysis, so I can safely “peek”
at the results as they happen without worrying about skewing our experiment data. This is a major advantage for product teams since it allows them to
quickly understand the progress of the test as it happens rather than waiting until the experiment is completed like with a fixed-horizon T-Test.

https://help.amplitude.com/hc/en-us/articles/4403176829709-How-Amplitude-Experiment-uses-sequential-testing-for-statistical-inference

57Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Remediate data quality issues faster to improve your results

A week into the test, I get an email notifying me of a potential issue with the Implementation &
Instrumentation of our experiment. Our data quality checks are highlighting that our test may
be experiencing Variant Jumping, a major we might be suffering from Variant Jumping, a major
problem with our results.

I head to the Monitor tab and immediately notice an issue: exposures and assignments are
supposed to be at 50/50 but are misaligned. This means some users likely see both variants
within the same test. Since experimentation requires completely randomized and independent
data sets, we probably have some serious issues with our results.

The Analyze tab shows that the data quality checklist clearly highlights the issue, guiding me
to quickly remediate it.

58Build with Confidence: Your Guide to Scaling Product-Led Experimentation

I work with engineering to resolve the issue quickly.
Engineering seamlessly rolls back the test and restores the
previous version using Experiment’s robust feature flagging
capabilities. Engineering opens up Analytics and realizes an
implementation issue with Android users. Amplitude tracks
user “platform” as a user property and seamlessly manages
user identity across devices, making it easy for engineering to
identify which user cohort experienced the issue.

Engineering rewrites the code to fix the issue. Since Analytics
and Experiment are natively integrated, it is easy to identify
challenges, get notified to act, and resolve the issue with help
from engineering.

And now, I am ready to re-run the experiment.

Analyze your results and safely deliver
the new experience to your users
After re-running our test and letting it run for two weeks, I
am automatically notified by email that we have achieved
statistical significance. I connect with my data analyst team
to review the results.

Since our analysts understand and trust Sequential Testing
and the data quality checks built into Amplitude Experiment,
they are comfortable with the test results. This saves our
data analysts a significant amount of time and allows them
to focus on higher-value analyses while unblocking me to
innovate our product experience faster.

Since Analytics and

Experiment are natively

integrated, it is easy to identify

challenges, get notified to act,

and resolve the issue with help

from engineering.

59Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Based on our test, we achieved a statistically significant lift in our loyalty program sign up conversion from 23.7% to over 32.1% based on our
changes—and much closer to our business targets.

60Build with Confidence: Your Guide to Scaling Product-Led Experimentation

After I meet with my data and engineering counterparts, we are ready
to roll out the winner to more users. Engineering uses a progressive roll
out to increase the traffic from 10% to 100% of users, which gives us
the confidence that our efforts will Loyalty Program signups and add
significant value to our business.

AmpliStore’s product organization can now scale our experimentation
program by connecting analytics and experimentation in one unified
platform. This helps us accelerate innovation and maximize our product
investments. We can also significantly reduce product development
cycles through better collaboration across product management,
engineering, and data teams.

61Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Built with product-led experimentation in mind, Amplitude Experiment
brings the same rigor to experimentation that distinguishes Amplitude

Analytics. In this chapter, we’ll explore how the platform works,
including its testing methodology and the automated features and
other tools designed to help you conduct scientifically sound tests that
yield results you can trust.

Testing methodology
Most experiments fall into two categories: “hypothesis testing” and
“do no harm.” “Hypothesis testing” refers to experiments that use data
to determine which variant to roll out based on performance. If none
of your variants outperform the control, then in most cases, it makes
sense to stick with the control experience.

“Do no harm” experiments are used to confirm that a change will not
significantly harm key metrics. This type of experiment is often used for
design system alterations or to mitigate risk.

How Experimentation
Works in Amplitude

By Akhil Prakash and Kathy Qian
Amplitude

Of course, there are cases where an experiment does not reach
statistical significance. When this happens in hypothesis testing,
Amplitude recommends reverting to the control. For do no harm
experiments, we recommend rolling out the higher-performing
variant based on the direction of the primary metric. If the direction
is “increase,” roll out the treatment with the most positive lift; if the
direction is “decrease,” roll out the variant with the most negative lift.

Sequential testing
Amplitude Experiment offers multiple statistical methodologies
for hypothesis testing that can be configured directly from the user
experience. One of the most popular methodologies used by product

https://amplitude.com/amplitude-experiment
https://amplitude.com/amplitude-analytics
https://amplitude.com/amplitude-analytics

62Build with Confidence: Your Guide to Scaling Product-Led Experimentation

teams is sequential testing due to its built-in advantages, chiefly the
ability to “peek” at the results throughout the experiment, without
degrading your results. Our specific version of sequential testing,
mixture Sequential Probability Ratio Test (mSPRT), allows you to peek as
many times as you want—and you don’t have to decide on a number
before the test starts, as you would with a grouped sequential test. As
a result, you can decrease the experiment duration if the effect size is
much bigger than the minimum detectable effect (MDE).

Another advantage of sequential testing is that it does not require
users to know how to use a sample-size calculator, which can be
challenging for non-technical team members. Instead, Amplitude pre-
populates the sample-size calculator with standard industry defaults
(95% confidence level and 80% power), computing the control mean
and standard deviation (if necessary) over the last seven days.

In sample-size calculators, there is typically a field called “power”
(1- false negative rate). With sequential testing, this field is essentially
replaced with “how many days you are willing to run the test for.”
This is a much more accessible number for most product and
engineering teams.

T-tests
In addition to sequential testing, Amplitude Experiment offers fixed

horizon T-testing, a standard methodology familiar to any data scientist.
T-tests are valuable for their precision and are best used when sample
sizes are small. They can also be useful when ending an experiment

early might risk skewing the results, such as overweighting certain days
or weeks—an issue where a product’s seasonality comes into play. For
instance, a map app may see higher traffic on weekends as opposed
to weekdays. T-tests are also the go-to for any experiments where the
object is to study long-term metrics.

Bonferroni correction
Simple, single-hypothesis tests can yield valuable insights, but
multiple-hypothesis tests are often even more useful and certainly
more efficient. There is one downside: they can introduce errors into
your statistical significance calculations via the multiple comparisons

problem (also known as multiplicity or the look-elsewhere effect). The
probability of making an error (by basing a critical business decision on
a false positive result) increases rapidly with the number of hypothesis
tests you are running.

Fortunately, there are statistical tools used to compensate and correct
for the multiple comparisons problem. Amplitude uses the Bonferroni
correction to accomplish this.

The Bonferroni correction is the simplest statistical method for
counteracting the multiple comparisons problem. (It’s also one of the
more conservative methods and carries a greater risk of false negatives
than other techniques.) Mathematically, the Bonferroni correction
works by dividing the false positive rate by the number of hypothesis
tests you are running; this is equivalent to multiplying the p-value by
the number of hypothesis tests.

https://help.amplitude.com/hc/en-us/articles/4403176829709-How-Amplitude-Experiment-uses-sequential-testing-for-statistical-inference
https://arxiv.org/pdf/1512.04922.pdf
https://help.amplitude.com/hc/en-us/articles/12587885686299-Analyze-your-experiment-data-with-the-T-test
https://help.amplitude.com/hc/en-us/articles/12587885686299-Analyze-your-experiment-data-with-the-T-test
https://en.wikipedia.org/wiki/Multiple_comparisons_problem
https://en.wikipedia.org/wiki/Multiple_comparisons_problem

63Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Amplitude Experiment performs Bonferroni corrections on both the
number of treatments and the number of metrics in each of the two
metric tiers (primary and secondary). In other words, Bonferroni is only
applied to the primary metric when there are multiple treatments (i.e.,
more than two). Bonferroni is applied to the secondary metric if there
are multiple secondary metrics or multiple treatments.

How? CUPED first identifies a baseline characteristic (also known as a
covariate) that may be related to the treatment effect. This covariate
is then used to match individuals in the treatment and control groups
based on their propensity score, which is the predicted probability of
performing the conversion event based on the covariate.

By matching individuals with similar propensity scores, CUPED corrects
for differences in users’ likelihood to convert that stem from factors
other than the product change being tested, which reduces the bias
in the estimated treatment effect. This is important because some
subgroups are more likely to respond to the treatment than others, and
these subgroups may not be equally distributed among treatment and
control groups.

There are some cases where CUPED is not necessary or will not reduce
variance within your tests. This is true if you are only targeting new
users in your test or the event was not instrumented in Amplitude
Analytics during the pre-period. In general, anonymous users can be
problematic for CUPED, but with Amplitude’s differentiated approach
to seamlessly managing user identity, this is not a problem for Amplitude
Experiment customers.

Look for an info icon in the significance column when
Bonferroni correction is applied. The tooltip shows the
corrected and uncorrected p-value.

Toggle on CUPED within your statistical settings under
the Analyze tab in Amplitude Experiment. This is also
available within Experiment Results.

CUPED
In traditional A/B testing, the average treatment effect is estimated
by comparing the average outcomes of a treatment group to a control
group. However, this method assumes that the treatment effect is the
same for all individuals, which is not always true.

To address this limitation, Amplitude Experiment uses the statistical
technique Controlled-experiment Using Pre-Existing Data (also known
as CUPED), which estimates the treatment effect separately for each
individual and then aggregates the individual estimates to obtain an
overall estimate of the treatment effect. This ensures CUPED helps you
reduce variance in your tests and achieve statistical significance faster.

https://help.amplitude.com/hc/en-us/articles/115003135607
https://amplitude.com/blog/ab-testing
https://exp-platform.com/Documents/2013-02-CUPED-ImprovingSensitivityOfControlledExperiments.pdf
https://help.amplitude.com/hc/en-us/articles/13448368364187-Modify-your-experiment-results-with-statistical-settings#cuped

64Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Targeting and assignment
Ensuring the right users are exposed to the right variant is essential to
the integrity of your experiments—and your results. That’s why we’ve
built Amplitude Experiment with a variety of tools and capabilities
designed to do just that.

Exposure

One of the most important concepts to understand is exposure events.

An exposure event is a strictly defined analytics event sent to Amplitude

to inform Amplitude Experiment that a user was shown a variant of an

experiment or feature flag. Exposure events contain the flag key and the

variant of the flag or experiment that the user has been exposed to in the

event properties.

When Amplitude ingests an exposure event, it uses the flag key and variant

to set or unset user properties on the user associated with the event.

Setting user properties is essential for experiment analysis queries on

primary and secondary success metrics.

Sticky bucketing

Teams also need to ensure that users have a consistent experience

regardless of what devices they use. Sticky bucketing helps ensure that a

user will continue to see the same variant if your experiment’s targeting

criteria, percentage rollout, or rollout weights are changed. Amplitude

Experiment uses consistent bucketing, which keeps users bucketed

into their original variants as long as you don’t change anything. (Note:

Amplitude Experiment uses a deterministic hashing algorithm, not a

random hashing algorithm.)

When sticky bucketing is on, Amplitude Experiment will not evaluate
users based on targeting conditions or allocation percent. Instead, they
will continue to see the last variant they saw. (See the evaluation flow
chart to learn more about the order in which evaluation happens.)

Sticky bucketing is often used as a defense mechanism against variant

jumping. However, simply enabling sticky bucketing does not guarantee
you’ll never see variant jumping. It may still occur if your experiment
includes both a logged-out and a logged-in experience. When the user
is logged out, they may have a different Amplitude ID than when they
are logged in.

To turn sticky bucketing on or off, navigate to the
Configure tab and look for the sticky bucketing toggle
under Advanced Settings.

https://www.docs.developers.amplitude.com/experiment/general/exposure-tracking/#exposure-event
https://www.docs.developers.amplitude.com/experiment/general/data-model/#flags-and-experiments
https://help.amplitude.com/hc/en-us/articles/12939879862171-Sticky-bucketing-in-Amplitude-Experiment
https://www.docs.developers.amplitude.com/experiment/general/evaluation/implementation/#consistent-bucketing
https://www.docs.developers.amplitude.com/experiment/general/evaluation/implementation/
https://www.docs.developers.amplitude.com/experiment/general/evaluation/implementation/
https://www.docs.developers.amplitude.com/experiment/guides/troubleshooting/variant-jumping/
https://www.docs.developers.amplitude.com/experiment/guides/troubleshooting/variant-jumping/

65Build with Confidence: Your Guide to Scaling Product-Led Experimentation

When should you enable sticky bucketing?

•	� You want to give the user a consistent experience, even if the user
property you’re targeting changes. For example, if you’re running
an experiment only in the United States, enabling sticky bucketing
would ensure your users would see the same variant if they
happened to travel outside the country.

•	� You want to decrease the percentage of users in an experiment
where the treatment group is not performing well. But you don’t
want users to be moved from either the treatment or the control to
the group that never saw either variant. Enabling sticky bucketing
will keep users in their assigned groups even after you change the
percentage rollout.

•	� You want to target users for a specified duration and then stop
targeting new users while maintaining the original assignments for
any users that have already been bucketed. Enable sticky bucketing
at the beginning of the experiment with a 50/50 split. Then, after the
duration passes, change the rollout percentage to zero.

•	� You want to sunset a failed experiment but ensure the users
bucketed into an experience still get that experience. Enable sticky
bucketing and set the rollout percentages to zero.

Do not enable sticky bucketing when:

•	� You want the user’s experience to change as the targeted user
property changes. To continue an example from the previous list, if
you‘re running an experiment in the United States, you may not want
users to have the same experience if they’re traveling abroad. There
may be legal reasons you cannot enable certain features of your app
in certain countries, or there may be localization issues that affect
how your app’s UI displays.

•	� Your experiment is intended to drive free users to become paid users
and relies on earning rewards. Once these users convert, you no
longer need to offer a reward. If sticky bucketing were enabled here,
those users would receive the free experience even after upgrading
to paid.

•	� You want to enforce a “cool down” period between giving discounts.
If you want to limit the frequency of discounts for each user to once
every seven days, you can add a seven-day filter to the targeting
criteria; if a user received a discount within that period, the flag
would evaluate to [off]. With sticky bucketing enabled, this would
not happen, and the user would collect another discount before you
wanted them to.

•	� You are rolling out or rolling back a variant. When sticky bucketing is
enabled and you change the traffic allocation, you’ll get a weighted
average between the old and new allocation (since the users who
were previously bucketed will stay in their bucket). It will take some
time for your experiment to achieve the desired allocation.

Sticky bucketing helps ensure that a user
will continue to see the same variant if your
experiment’s targeting criteria, percentage
rollout, or rollout weights are changed.

66Build with Confidence: Your Guide to Scaling Product-Led Experimentation

This is not intended to be an exhaustive list. There are also cases
where the results would be the same, regardless of whether sticky
bucketing was on or off. An example might be an experiment where
you’re targeting everyone who views your home page, and you do not
touch any of the experiment controls while the experiment is running.

Bucket on group IDs
Experiment Analysis supports different units of analysis. Previously,
the default unit was “user.” Now we also support various group types
like org ID, account ID, etc. This level of flexibility is beneficial for B2B
organizations who want to deliver tests to specific accounts, such
as beta customers, or perhaps restrict high-value customers from
receiving any experiments at all.

Holdout groups
Teams need a variety of ways to manage running multiple tests at a
time. Using holdout groups is one way to achieve this. To measure
the long-term and combined impact of multiple experiments, it
is useful to withhold a portion of users from any experiment. This
approach yields a more comprehensive understanding of the effects,
as statistical significance in a single experiment may not reflect the
overall impact. Amplitude Experiment makes it easy to exclude a group
of users from your experiments by creating a holdout group. This will
withhold a portion of the overall traffic from seeing any experiment
within the group.

We recommend adding experiments to a holdout group for the following
use cases:

•	 Measuring the long-term impact of your rolled out variants

•	 Measuring the lift of your team’s product changes as a whole

Best practices

The following are some best practices to keep in mind when using holdout
groups:

•	� Set the holdout percentage to a value between 1-10%.

	 - �It is recommended to have a large amount of traffic to begin with,
otherwise withholding a significant portion of your total traffic will lead
to extended experiment time frames.

•	� Don’t add a running experiment to a holdout group. This may severely
compromise the integrity of your data because it may unassign users
from the active experiments being added.

	 -	� We recommend adding experiments to a holdout group before they
have started running.

•	� Don’t remove a running experiment from a holdout group. This may
compromise the integrity of your data because it may assign users to the
active experiments being removed.

	 - �Deleting a holdout group with running experiments has the same
consequences. Delete the holdout group after all experiments in the
group have concluded.

67

Mutual exclusion groups
Another way for teams to manage running
multiple tests at a time is to use Mutual Exclusion

Groups. Mutual exclusion groups help ensure
users included in one experiment are not
exposed to any related experiments (or colliding
tests) at the same time. This is crucial to avoid
interaction effects or conflicting results that
may arise from running multiple experiments
simultaneously to solve the same problem.

With Amplitude Experiment, you can set two
or more experiments to be mutually exclusive.
Simply add both experiments to the same
exclusion group. Amplitude Experiment will take
care of the rest.

We recommend mutually exclusive experiments
for the following situations:

•	 �When simultaneous experiments occur in
the same area of your product and have the
same goal.

•	 �When simultaneous experiments occur in the
same funnel and have the same goal.

Alternatively, you could run these experiments
one after the other instead of simultaneously.

Mutual exclusion groups help
ensure users included in one
experiment are not exposed to any
related experiments (or colliding
tests) at the same time.

https://help.amplitude.com/hc/en-us/articles/360061270712-Set-up-and-run-mutually-exclusive-experiments
https://help.amplitude.com/hc/en-us/articles/360061270712-Set-up-and-run-mutually-exclusive-experiments

68Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Best practices

The following are some best practices to keep in mind when using
mutual exclusion groups:

•	� Evenly distribute traffic between your slots.

•	� Don’t add a running experiment to a mutual exclusion group. This
may severely compromise the integrity of your data because it may
unassign users from the active experiments being added.

	 - �We recommend adding experiments to a mutual exclusion group
before they have started running.

•	� Don’t remove a running experiment from a mutual exclusion group.
This may compromise the integrity of your data because it exposes
your users to the other experiments in the group.

	 - �In addition, deleting a mutual exclusion group with running
experiments has the same consequences. We recommend deleting
the mutual exclusion group after all experiments in the group
have concluded.

Sample Size Calculator
Calculating the right sample size—the number of participants needed
for an experiment—is another important step toward accurate results.

Amplitude’s sample size calculator helps you determine how much
traffic each variant needs to reach statistical significance for a given
metric. Once you have this number, you can divide it by the average
traffic per day or week for the segments you plan on targeting to
estimate how long the experiment will likely take. (While Amplitude

Experiment supports sequential testing, the sample size calculator
solely supports determining the sample size for T-tests.)

If you find that the sample size returned by the calculator is larger
than you’d like, resulting in an experiment that would take too long to
execute, there are a few steps you can take:

Increase the minimum detectable effect (or MDE). The lower the MDE,
the more difficult it is to measure precisely, meaning you’ll need a
larger sample size. To understand what you should use as a MDE, it’s
helpful to think about the ROI of an initiative and what magnitude
of increase in your primary metric is needed to justify the cost of
implementing and maintaining the change.

Decrease the confidence level. Generally, 95% is accepted as the
industry standard. However, values as low as 80% can help generate
directional insights.

Experiment duration estimation

The experiment duration estimate is designed to predict the length
of time your experiment will run. It can only be used with the primary
metric but works for both sequential testing and T-tests. Amplitude
Experiment uses the means, variances, and exposures of your control
and variants to forecast expected behavior and calculate how many
days your experiment will take to reach statistical significance. As
Amplitude Experiment receives more data over time, this prediction
will improve. However, if any of these inputs change significantly during
the experiment, the accuracy of the prediction will likely decrease.

https://help.amplitude.com/hc/en-us/articles/11502996649371-Plan-experiments-with-help-from-the-sample-size-calculator

69Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Data quality guardrails
There are few more important rules of data analysis than Twyman’s
law, which is premised on the principle that the more unusual or
unexpected the data, the more likely they are to be the result of an
error in data measurement or analysis. You could apply the same tenet
to experiment results. In other words, if a result looks too good
(or striking) to be true, it probably is.

That’s why Amplitude Experiment comes with built-in guardrails
to ensure the quality of your testing data. These automated checks
appear in a consolidated list in the Analyze tab, alerting you of any
data issues that can lead to skewed or confusing results. They also
show common pitfalls to watch out for in setting up and implementing
experiments—and guidance for overcoming them.

Automatic checks include:

•	� Consistent number and definition of variants

•	� Consistent allocation between treatment and control variants

•	� If a test has sample ratio mismatches

•	� If a test has exposure events without assignment events

•	� If variant jumping is occurring at a high frequency

•	� Traffic decreases over time

•	� If there are suspiciously large uplifts and aberrations in event data

•	� If there are abnormal variance, standard error, or confidence intervals

•	� Exposures without assignments

Exposures without assignments

The Exposures without Assignments chart (in the Monitor tab) queries
for the cumulative number of unique users who have performed an
exposure event without a corresponding assignment event within each
day. If you see a large number or percentage of users in the chart, be
careful when interpreting the results of your experiment. Investigate
what happens if a user inadvertently gets exposed to the experiment.
Was the experience bad? Can the user even see the experience? What
does it mean if a user sees more than one experiment when they’re
mutually exclusive? Exposure without assignment may also affect
future experiments, so you should investigate and fix the issue.

https://www.docs.developers.amplitude.com/experiment/guides/troubleshooting/exposures-without-assignments/

70Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Sample ratio mismatch

Amplitude Experiment also checks for sample ratio mismatch (SRM)
issues. (To view any issues detected, click on Implementation &
Instrumentation in the Analyze tab of the data quality guide). An SRM
occurs when the observed allocation for variants significantly differs
from the specified allocation. For example, imagine you’ve set your
experiment’s traffic allocation to be split equally between the control
and treatment variants, but instead, the control receives 55% of the
experiment’s traffic. SRMs point to biases in the data and can lead to
unexpected or inaccurate results if unresolved. Generally, you should
be wary of the results of any experiment affected by a SRM. The
cumulative assignment or exposure charts can help you track down the
cause of an SRM. Look for timestamps where the control and treatment
time series diverge; often, you’ll find the cause there.

Variant jumping

In some cases, SRMs are caused by variant jumping. This is
when the same user sees two or more variants for a single flag or
experiment, which sometimes occurs with authentication patterns
that make it difficult to know if a user has already been assigned a
variant. Examples include applications with short-lived sessions and
applications with large numbers of anonymous users.

Variant jumping may occur normally or abnormally, for various reasons,
but variant jumping above a certain threshold may be cause for concern
when it comes to an accurate analysis. Amplitude Experiment helps
you debug variant jumping by flagging users who have jumped variants

so you can analyze their timelines. If you’re using remote evaluation,
you should check the assignment event to identify assignment vs.
exposure discrepancies.

A rigorous approach to experimentation

When it comes to experimentation in your digital product, testing
methodology is essential. A platform informed by best practices
for experimentation and statistics can ensure you’re doing it right.
Amplitude’s end-to-end platform was designed for the most reliable
results, while providing a seamless, consistent experience for your
customers.

SRMs point to biases in the data
and can lead to unexpected or
inaccurate results if unresolved.

https://www.docs.developers.amplitude.com/experiment/guides/troubleshooting/sample-ratio-mismatch/

71Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Cultivating a culture of experimentation
is the first step to building a product-led
experimentation program—creating and
executing a strategic experimentation system
is the next. Learn more by applying for the
Reforge Experimentation + Testing program.

Using the best practices throughout this guide will set your
experimentation program up for long-term scale and success.
Your product and engineering teams will be able to confidently
make product bets and release new features with measurable
impact every time you ship. And your entire organization will
benefit from data-driven decisions that move the needle on
business goals.

Whether you’re starting from scratch or scaling an existing
program, Amplitude Experiment will take you to the next level.
With built-in identity resolution, feature management, and
statistical rigor, Experiment will guide you to results you can
trust. Start building confidently today and request an

Experiment demo.

Getting Started with
Experimentation

https://www.reforge.com/programs/experimentation-testing?utm_source=amplitude&utm_medium=referral&utm_campaign=comarketing&utm_term=&utm_content=experimentation_playbook
https://amplitude.com/amplitude-experiment
https://info.amplitude.com/experiment-demo
https://info.amplitude.com/experiment-demo

72Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Contributors
SALEEM MALKANA | Executive in Residence - Reforge

Saleem is an Executive in Residence at Reforge. He is the former
VP Product for NBC News, MSNBC, and other brands that together
reach 120M+ users monthly. Previously, Saleem led Product at
AMC Networks’ DTC startup, growing subscription video brands
from proof of concept to over 1M paying subscribers. He also brings
perspective from his experiences at Amazon, MTV, and the CIA.

BHAVIK PATEL | Founder and Managing Director, CAUSL

Bhav is the founder of CAUSL, a Product Measurement
Consultancy that helps product organizations connect the dots
between their product initiatives and company goals. Bhav has
previously held "Director and Head of Product Analytics" roles at
companies like Gousto, MOO, PhotoBox, and most recently, Hopin.
Bhav also runs London’s biggest conversion rate optimization,
analytics, and product meetup called CRAP Talks.

ELENA VERNA | Growth Advisor, Interim Growth Exec

Elena was previously Head of Growth at Amplitude. She is a growth
hobbyist, helping companies build product-led growth models.
She is a Program Partner at Reforge, Board Member at Netlify, and
Advisor to Clockwise, SimilarWeb, and Veed. Previously, she was
SVP of Growth at SurveyMonkey and CMO at Miro.

WIL PONG | Head of Product, Experiment, Amplitude

Wil Pong is the Head of Product for Amplitude Experiment.
Previously, he was the Director of Product for the Box Developer
Platform and Product Lead for the LinkedIn Talent Hub.

CHAD SANDERSON | Head of Data, Data Contracts Advocate

Chad Sanderson is passionate about data quality, and fixing the
muddy relationship between data producers and consumers.
He is a former Head of Data at Convoy, a LinkedIn writer, and a
published author. He lives in Seattle, Washington, and operates
the Data Quality Camp Slack group.

AKHIL PRAKASH | Senior Machine Learning Scientist, Amplitude

Akhil is a Senior ML Scientist at Amplitude. He focuses on using
statistics and machine learning to bring product insights to the
Experiment product.

KATHY QIAN | Product Manager, Amplitude

Kathy Qian is a data scientist turned product manager working on
the Experiment product. She has an extensive background in both
product and marketing experimentation and has helped multiple
Fortune 1000 companies across the retail, grocery, hospitality,
and restaurant industries design and analyze transaction,
customer, store, and market-level initiatives.

AUDREY XU | Solutions Consultant, Amplitude

Audrey Xu is a Solutions Consultant at Amplitude, working with
companies to uncover areas of opportunity and build better
products. She is a self-proclaimed Amplitude nerd and graduated
with a degree from U.C. Berkeley.

https://www.reforge.com/experts/saleem-malkana
https://www.linkedin.com/in/dodonerd/
https://www.linkedin.com/in/elenaverna/
https://www.linkedin.com/in/wpong/
https://www.linkedin.com/in/chad-sanderson/
https://www.linkedin.com/in/xuaudrey/

Build with Confidence: Your Guide to Scaling Product-Led Experimentation

Start building confidently today and request an
Experiment demo

©2023 Amplitude, Inc. All rights reserved. Amplitude is a registered trademark of Amplitude, Inc.

Power to your productsTM

About Amplitude

Amplitude is a leading digital analytics platform that helps companies unlock the power of their products. Almost 2,000 customers, including Atlassian,

Jersey Mike’s, NBCUniversal, Shopify, and Under Armour, rely on Amplitude to gain self-service visibility into the entire customer journey. Amplitude

guides companies every step of the way as they capture data they can trust, uncover clear insights about customer behavior, and take faster action. When

teams understand how people are using their products, they can deliver better product experiences that drive growth. Amplitude is the best-in-class

analytics solution for product, data, and marketing teams, ranked #1 in multiple categories in G2’s 2023 Winter Report. litude.com.

https://info.amplitude.com/experiment-demo
https://amplitude.com/sales-contact

